Department of Chemistry, University of California, Irvine, Irvine, California.
Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California.
Biophys J. 2024 Sep 17;123(18):3143-3162. doi: 10.1016/j.bpj.2024.07.013. Epub 2024 Jul 15.
Prolyl oligopeptidases from psychrophilic, mesophilic, and thermophilic organisms found in a range of natural environments are studied using a combination of protein structure prediction, atomistic molecular dynamics, and trajectory analysis to determine how the S9 protease family adapts to extreme thermal conditions. We compare our results with hypotheses from the literature regarding structural adaptations that allow proteins to maintain structure and function at extreme temperatures, and we find that, in the case of prolyl oligopeptidases, only a subset of proposed adaptations are employed for maintaining stability. The catalytic and propeller domains are highly structured, limiting the range of mutations that can be made to enhance hydrophobicity or form disulfide bonds without disrupting the formation of necessary secondary structure. Rather, we observe a pattern in which overall prevalence of bound interactions (salt bridges and hydrogen bonds) is conserved by using increasing numbers of increasingly short-lived interactions as temperature increases. This suggests a role for an entropic rather than energetic strategy for thermal adaptation in this protein family.
使用蛋白质结构预测、原子分子动力学和轨迹分析相结合的方法,研究了在各种自然环境中发现的来自嗜冷、中温和嗜热生物的脯氨酰寡肽酶,以确定 S9 蛋白酶家族如何适应极端热条件。我们将我们的结果与文献中关于允许蛋白质在极端温度下保持结构和功能的结构适应的假设进行了比较,我们发现,在脯氨酰寡肽酶的情况下,只有一部分被提议的适应被用于维持稳定性。催化和推进器结构域高度结构化,限制了可以进行的突变范围,这些突变可以增强疏水性或形成二硫键,而不会破坏必要的二级结构的形成。相反,我们观察到一种模式,即随着温度的升高,通过使用越来越多的短寿命相互作用来保持结合相互作用(盐桥和氢键)的总体普遍性。这表明在这个蛋白质家族中,热适应的策略是基于熵而不是能量。