Department of Chemical and Biomolecular Engineering, North Carolina State University, EB-1, 911 Partners Way, Raleigh, NC 27695-7905, USA.
Appl Environ Microbiol. 2009 Dec;75(24):7718-24. doi: 10.1128/AEM.01959-09. Epub 2009 Oct 9.
Coutilization of hexoses and pentoses derived from lignocellulose is an attractive trait in microorganisms considered for consolidated biomass processing to biofuels. This issue was examined for the H(2)-producing, extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus growing on individual monosaccharides (arabinose, fructose, galactose, glucose, mannose, and xylose), mixtures of these sugars, as well as on xylan and xylogluco-oligosacchrides. C. saccharolyticus grew at approximately the same rate (t(d), approximately 95 min) and to the same final cell density (1 x 10(8) to 3 x 10(8) cells/ml) on all sugars and sugar mixtures tested. In the monosaccharide mixture, although simultaneous consumption of all monosaccharides was observed, not all were utilized to the same extent (fructose > xylose/arabinose > mannose/glucose/galactose). Transcriptome contrasts for monosaccharide growth revealed minimal changes in some cases (e.g., 32 open reading frames [ORFs] changed >/=2-fold for glucose versus galactose), while substantial changes occurred for cases involving mannose (e.g., 353 ORFs changed >/=2-fold for glucose versus mannose). Evidence for catabolite repression was not noted for either growth on multisugar mixtures or the corresponding transcriptomes. Based on the whole-genome transcriptional response analysis and comparative genomics, carbohydrate specificities for transport systems could be proposed for most of the 24 putative carbohydrate ATP-binding cassette transporters and single phosphotransferase system identified in C. saccharolyticus. Although most transporter genes responded to individual monosaccharides and polysaccharides, the genes Csac_0692 to Csac_0694 were upregulated only in the monosaccharide mixture. The results presented here affirm the broad growth substrate preferences of C. saccharolyticus on carbohydrates representative of lignocellulosic biomass and suggest that this bacterium holds promise for biofuel applications.
木质纤维素衍生的六碳糖和五碳糖的共利用是考虑用于巩固生物量加工为生物燃料的微生物的一个有吸引力的特征。对于产氢、极端嗜热细菌 Caldicellulosiruptor saccharolyticus,我们研究了其在单一单糖(阿拉伯糖、果糖、半乳糖、葡萄糖、甘露糖和木糖)、这些糖的混合物以及木聚糖和木糖葡糖苷低聚糖上的生长情况。C. saccharolyticus 以大致相同的速率(t(d),约 95 分钟)和相同的最终细胞密度(1 x 10(8)到 3 x 10(8)个细胞/ml)在所有测试的糖和糖混合物上生长。在单糖混合物中,尽管观察到所有单糖同时被消耗,但并非所有单糖都被同等利用(果糖>木糖/阿拉伯糖>甘露糖/葡萄糖/半乳糖)。单糖生长的转录组对比显示,在某些情况下变化很小(例如,与半乳糖相比,葡萄糖有 32 个开放阅读框 [ORF]变化大于等于 2 倍),而对于涉及甘露糖的情况则发生了很大变化(例如,与葡萄糖相比,葡萄糖有 353 个 ORF 变化大于等于 2 倍)。对于在多聚糖混合物上生长或相应的转录组,未观察到分解代谢物阻遏的证据。基于全基因组转录响应分析和比较基因组学,可以为 C. saccharolyticus 中鉴定的 24 个假定碳水化合物 ATP 结合盒转运蛋白和单个磷酸转移酶系统中的大多数提出碳水化合物特异性的运输系统。尽管大多数转运蛋白基因对单个单糖和多糖有反应,但 Csac_0692 到 Csac_0694 基因仅在单糖混合物中上调。这里呈现的结果证实了 C. saccharolyticus 对代表木质纤维素生物质的碳水化合物的广泛生长底物偏好,并表明该细菌在生物燃料应用中具有潜力。