Suppr超能文献

用于快速三维T1rho磁共振成像的T1rho准备平衡梯度回波序列

T1rho-prepared balanced gradient echo for rapid 3D T1rho MRI.

作者信息

Witschey Walter R T, Borthakur Arijitt, Elliott Mark A, Fenty Matthew, Sochor Matthew A, Wang Chenyang, Reddy Ravinder

机构信息

Metabolic Magnetic Resonance Research and Computing Center, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6100, USA.

出版信息

J Magn Reson Imaging. 2008 Sep;28(3):744-54. doi: 10.1002/jmri.21444.

Abstract

PURPOSE

To develop a T1rho-prepared, balanced gradient echo (b-GRE) pulse sequence for rapid three-dimensional (3D) T1rho relaxation mapping within the time constraints of a clinical exam (<10 minutes), examine the effect of acquisition on the measured T1rho relaxation time and optimize 3D T1rho pulse sequences for the knee joint and spine.

MATERIALS AND METHODS

A pulse sequence consisting of inversion recovery-prepared, fat saturation, T1rho-preparation, and b-GRE image acquisition was used to obtain 3D volume coverage of the patellofemoral and tibiofemoral cartilage and lower lumbar spine. Multiple T1rho-weighted images at various contrast times (spin-lock pulse duration [TSL]) were used to construct a T1rho relaxation map in both phantoms and in the knee joint and spine in vivo. The transient signal decay during b-GRE image acquisition was corrected using a k-space filter. The T1rho-prepared b-GRE sequence was compared to a standard T1rho-prepared spin echo (SE) sequence and pulse sequence parameters were optimized numerically using the Bloch equations.

RESULTS

The b-GRE transient signal decay was found to depend on the initial T1rho-preparation and the corresponding T1rho map was altered by variations in the point spread function with TSL. In a two compartment phantom, the steady state response was found to elevate T1rho from 91.4+/-6.5 to 293.8+/-31 and 66.9+/-3.5 to 661+/-207 with no change in the goodness-of-fit parameter R2. Phase encoding along the longest cartilage dimension and a transient signal decay k-space filter retained T1rho contrast. Measurement of T1rho using the T1rho-prepared b-GRE sequence matches standard T1rho-prepared SE in the medial patellar and lateral patellar cartilage compartments. T1rho-preparedb-GRE T1rho was found to have low interscan variability between four separate scans. Mean patellar cartilage T1rho was elevated compared to femoral and tibial cartilage T1rho.

CONCLUSION

The T1rho-prepared b-GRE acquisition rapidly and reliably accelerates T1rho quantification of tissues offset partially by a TSL-dependent point spread function.

摘要

目的

开发一种T1rho准备的平衡梯度回波(b-GRE)脉冲序列,用于在临床检查时间限制(<10分钟)内快速进行三维(3D)T1rho弛豫成像,研究采集对测量的T1rho弛豫时间的影响,并优化膝关节和脊柱的3D T1rho脉冲序列。

材料与方法

使用由反转恢复准备、脂肪饱和、T1rho准备和b-GRE图像采集组成的脉冲序列,获取髌股关节和胫股关节软骨以及下腰椎的3D体积覆盖图像。在不同对比时间(自旋锁定脉冲持续时间[TSL])下采集多个T1rho加权图像,用于构建体模以及体内膝关节和脊柱的T1rho弛豫图。使用k空间滤波器校正b-GRE图像采集期间的瞬态信号衰减。将T1rho准备的b-GRE序列与标准的T1rho准备的自旋回波(SE)序列进行比较,并使用布洛赫方程对脉冲序列参数进行数值优化。

结果

发现b-GRE瞬态信号衰减取决于初始T1rho准备,并且相应的T1rho图会因TSL导致的点扩散函数变化而改变。在双室体模中,发现稳态响应使T1rho从91.4±6.5升高到293.8±31,从66.9±3.5升高到661±207,而拟合优度参数R2没有变化。沿着最长软骨维度进行相位编码和瞬态信号衰减k空间滤波器保留了T1rho对比度。使用T1rho准备的b-GRE序列测量的T1rho与标准的T1rho准备的SE在髌内侧和髌外侧软骨区域匹配。发现T1rho准备的b-GRE T1rho在四次单独扫描之间具有较低的扫描间变异性。与股骨和胫骨软骨的T1rho相比,髌软骨的平均T1rho升高。

结论

T1rho准备的b-GRE采集快速且可靠地加速了T1rho组织定量,部分被TSL依赖的点扩散函数所抵消。

相似文献

1
T1rho-prepared balanced gradient echo for rapid 3D T1rho MRI.
J Magn Reson Imaging. 2008 Sep;28(3):744-54. doi: 10.1002/jmri.21444.
2
Rapid 3D-T1rho mapping of the knee joint at 3.0T with parallel imaging.
Magn Reson Med. 2006 Sep;56(3):563-71. doi: 10.1002/mrm.20982.
4
Segmentation of carotid plaque using multicontrast 3D gradient echo MRI.
J Magn Reson Imaging. 2012 Apr;35(4):812-9. doi: 10.1002/jmri.22886. Epub 2011 Nov 29.
8
T2 Relaxation time quantitation differs between pulse sequences in articular cartilage.
J Magn Reson Imaging. 2015 Jul;42(1):105-13. doi: 10.1002/jmri.24757. Epub 2014 Sep 22.

引用本文的文献

2
Comparative Sensitivity of MRI Indices for Myelin Assessment in Spinal Cord Regions.
Tomography. 2025 Jan 14;11(1):8. doi: 10.3390/tomography11010008.
3
Quantitative and Compositional MRI of the Articular Cartilage: A Narrative Review.
Tomography. 2024 Jun 24;10(7):949-969. doi: 10.3390/tomography10070072.
4
Optimizing variable flip angles in magnetization-prepared gradient-echo sequences for efficient 3D-T1ρ mapping.
Magn Reson Med. 2023 Oct;90(4):1465-1483. doi: 10.1002/mrm.29740. Epub 2023 Jun 8.
5
3D T1rho sequences with FASE, UTE, and MAPSS acquisitions for knee evaluation.
Jpn J Radiol. 2023 Nov;41(11):1308-1315. doi: 10.1007/s11604-023-01453-8. Epub 2023 May 29.
6
SPICY: a method for single scan rotating frame relaxometry.
Phys Chem Chem Phys. 2023 May 10;25(18):13164-13169. doi: 10.1039/d2cp05988f.
9
Endogenous T1ρ cardiovascular magnetic resonance in hypertrophic cardiomyopathy.
J Cardiovasc Magn Reson. 2021 Oct 25;23(1):120. doi: 10.1186/s12968-021-00813-5.
10
Association of Jump-Landing Biomechanics With Tibiofemoral Articular Cartilage Composition 12 Months After ACL Reconstruction.
Orthop J Sports Med. 2021 Jul 21;9(7):23259671211016424. doi: 10.1177/23259671211016424. eCollection 2021 Jul.

本文引用的文献

1
Artifacts in T1 rho-weighted imaging: compensation for B(1) and B(0) field imperfections.
J Magn Reson. 2007 May;186(1):75-85. doi: 10.1016/j.jmr.2007.01.015. Epub 2007 Jan 26.
3
T2-weighted balanced SSFP imaging (T2-TIDE) using variable flip angles.
Magn Reson Med. 2006 Jul;56(1):82-93. doi: 10.1002/mrm.20922.
4
Assessment of human disc degeneration and proteoglycan content using T1rho-weighted magnetic resonance imaging.
Spine (Phila Pa 1976). 2006 May 15;31(11):1253-7. doi: 10.1097/01.brs.0000217708.54880.51.
5
In vivo quantification of human lumbar disc degeneration using T(1rho)-weighted magnetic resonance imaging.
Eur Spine J. 2006 Aug;15 Suppl 3(Suppl 3):S338-44. doi: 10.1007/s00586-006-0083-2. Epub 2006 Mar 22.
6
A pulse sequence for rapid in vivo spin-locked MRI.
J Magn Reson Imaging. 2006 Apr;23(4):591-6. doi: 10.1002/jmri.20537.
7
T1rho contrast in functional magnetic resonance imaging.
Magn Reson Med. 2005 Nov;54(5):1155-62. doi: 10.1002/mrm.20698.
10
In vivo quantification of T1rho using a multislice spin-lock pulse sequence.
Magn Reson Med. 2004 Dec;52(6):1453-8. doi: 10.1002/mrm.20268.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验