Suppr超能文献

用于从3D MRA时间序列中分离动脉和静脉的双参考互相关算法。

Double-reference cross-correlation algorithm for separation of the arteries and veins from 3D MRA time series.

作者信息

Santini Francesco, Patil Sunil, Meckel Stephan, Scheffler Klaus, Wetzel Stephan G

机构信息

Division of Radiological Physics, Institute of Radiology, Basel University Hospital, University of Basel, Basel, Switzerland.

出版信息

J Magn Reson Imaging. 2008 Sep;28(3):646-54. doi: 10.1002/jmri.21499.

Abstract

PURPOSE

To present a novel postprocessing technique for artery/vein separation and background suppression from contrast-enhanced time-resolved magnetic resonance angiography datasets in order to improve the diagnosis of vessel pathologies and arteriovenous fistulas.

MATERIALS AND METHODS

Ten normal, two pathologic datasets of the brain, and one hand angiography dataset were postprocessed. Cross-correlation maps between the signal time course of every voxel in the dataset and selected arterial and venous references regions of interest (ROIs) were obtained; these maps were subsequently nonlinearly transformed to obtain two indices representing the likelihood of a voxel belonging to a vessel category. Red-green-blue (RGB) color encoding was utilized to depict synthetic arteriogram and venogram images in a single diagnostically meaningful image.

RESULTS

The technique enabled correct visual separation of vessels on various datasets, as evaluated by two expert neuroradiologists, and also highlighted characteristics of flow in arteriovenous fistulas. A quantitative comparison with existing techniques showed better separation performance on 3 out of 10 normal datasets and higher stability to acquisition characteristics and contrast agent bolus dispersion.

CONCLUSION

This method can be helpful in the diagnosis of vascular diseases in subjects where bolus dispersion makes it difficult to discriminate between arteries and veins with standard methods (subtraction or correlation analysis).

摘要

目的

提出一种新的后处理技术,用于从对比增强的时间分辨磁共振血管造影数据集中分离动脉/静脉并抑制背景,以改善血管病变和动静脉瘘的诊断。

材料与方法

对10个正常的、2个脑部病理数据集和1个手部血管造影数据集进行后处理。获取数据集中每个体素的信号时间历程与选定的动脉和静脉参考感兴趣区域(ROI)之间的互相关图;随后对这些图进行非线性变换,以获得两个表示体素属于血管类别的可能性的指标。利用红-绿-蓝(RGB)颜色编码在一张具有诊断意义的单一图像中描绘合成动脉造影和静脉造影图像。

结果

经两名神经放射学专家评估,该技术能够在各种数据集上正确地直观分离血管,还突出了动静脉瘘中的血流特征。与现有技术的定量比较显示,在10个正常数据集中有3个表现出更好的分离性能,并且对采集特征和造影剂团注弥散具有更高的稳定性。

结论

对于团注弥散使得难以用标准方法(减法或相关分析)区分动脉和静脉的受试者,该方法有助于诊断血管疾病。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验