Suppr超能文献

基于刚性模型的磁共振成像(MR)和计算机断层扫描(CT)图像中关节骨骼的三维分割用于运动分析。

Rigid model-based 3D segmentation of the bones of joints in MR and CT images for motion analysis.

作者信息

Liu Jiamin, Udupa Jayaram K, Saha Punam K, Odhner Dewey, Hirsch Bruce E, Siegler Sorin, Simon Scott, Winkelstein Beth A

机构信息

Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6021, USA.

出版信息

Med Phys. 2008 Aug;35(8):3637-49. doi: 10.1118/1.2953567.

Abstract

There are several medical application areas that require the segmentation and separation of the component bones of joints in a sequence of images of the joint acquired under various loading conditions, our own target area being joint motion analysis. This is a challenging problem due to the proximity of bones at the joint, partial volume effects, and other imaging modality-specific factors that confound boundary contrast. In this article, a two-step model-based segmentation strategy is proposed that utilizes the unique context of the current application wherein the shape of each individual bone is preserved in all scans of a particular joint while the spatial arrangement of the bones alters significantly among bones and scans. In the first step, a rigid deterministic model of the bone is generated from a segmentation of the bone in the image corresponding to one position of the joint by using the live wire method. Subsequently, in other images of the same joint, this model is used to search for the same bone by minimizing an energy function that utilizes both boundary- and region-based information. An evaluation of the method by utilizing a total of 60 data sets on MR and CT images of the ankle complex and cervical spine indicates that the segmentations agree very closely with the live wire segmentations, yielding true positive and false positive volume fractions in the range 89%-97% and 0.2%-0.7%. The method requires 1-2 minutes of operator time and 6-7 min of computer time per data set, which makes it significantly more efficient than live wire-the method currently available for the task that can be used routinely.

摘要

有几个医学应用领域需要在关节处于各种加载条件下获取的一系列关节图像中对关节的组成骨骼进行分割和分离,我们自己的目标领域是关节运动分析。由于关节处骨骼的接近度、部分容积效应以及其他混淆边界对比度的成像模态特定因素,这是一个具有挑战性的问题。在本文中,提出了一种基于模型的两步分割策略,该策略利用了当前应用的独特背景,即在特定关节的所有扫描中,每块骨骼的形状都得以保留,而骨骼的空间排列在不同骨骼和扫描之间有显著变化。第一步,通过使用活动轮廓线方法,从对应于关节一个位置的图像中的骨骼分割生成骨骼的刚性确定性模型。随后,在同一关节的其他图像中,该模型用于通过最小化一个利用基于边界和基于区域信息的能量函数来搜索同一骨骼。利用总共60个踝关节复合体和颈椎的MR和CT图像数据集对该方法进行的评估表明,分割结果与活动轮廓线分割结果非常接近,真阳性和假阳性体积分数范围分别为89% - 97%和0.2% - .%。该方法每个数据集需要1 - 2分钟的操作员时间和6 - 7分钟的计算机时间,这使其比活动轮廓线方法显著更高效,活动轮廓线方法是目前可用于该任务且可常规使用的方法。

相似文献

2
Registration of 6-DOFs electrogoniometry and CT medical imaging for 3D joint modeling.
J Biomech. 2002 Nov;35(11):1475-84. doi: 10.1016/s0021-9290(02)00074-x.
3
Oriented active shape models.
IEEE Trans Med Imaging. 2009 Apr;28(4):571-84. doi: 10.1109/TMI.2008.2007820.
4
Automated bone segmentation from large field of view 3D MR images of the hip joint.
Phys Med Biol. 2013 Oct 21;58(20):7375-90. doi: 10.1088/0031-9155/58/20/7375. Epub 2013 Sep 27.
5
Comparison of 3D bone models of the knee joint derived from CT and 3T MR imaging.
Eur J Radiol. 2017 Aug;93:178-184. doi: 10.1016/j.ejrad.2017.05.042. Epub 2017 Jun 3.
8
Segmentation of multiple knee bones from CT for orthopedic knee surgery planning.
Med Image Comput Comput Assist Interv. 2014;17(Pt 1):372-80. doi: 10.1007/978-3-319-10404-1_47.

引用本文的文献

1
Bone Position and Ligament Deformations of the Foot From CT Images to Quantify the Influence of Footwear in Feet.
Front Bioeng Biotechnol. 2020 Jun 19;8:560. doi: 10.3389/fbioe.2020.00560. eCollection 2020.
2
3D Segmentation Algorithms for Computerized Tomographic Imaging: a Systematic Literature Review.
J Digit Imaging. 2018 Dec;31(6):799-850. doi: 10.1007/s10278-018-0101-z.
3
Statistical shape models of cuboid, navicular and talus bones.
J Foot Ankle Res. 2017 Jan 31;10:6. doi: 10.1186/s13047-016-0178-x. eCollection 2017.

本文引用的文献

1
3-D segmentation of MR images of the head for 3-D display.
IEEE Trans Med Imaging. 1990;9(2):177-83. doi: 10.1109/42.56342.
2
Shape-based interpolation of multidimensional objects.
IEEE Trans Med Imaging. 1990;9(1):32-42. doi: 10.1109/42.52980.
3
A framework for evaluating image segmentation algorithms.
Comput Med Imaging Graph. 2006 Mar;30(2):75-87. doi: 10.1016/j.compmedimag.2005.12.001.
5
Fluoroscopy-based 3-D reconstruction of femoral bone cement: a new approach for revision total hip replacement.
IEEE Trans Biomed Eng. 2005 Apr;52(4):664-75. doi: 10.1109/TBME.2005.844032.
6
Mechanics of the ankle and subtalar joints revealed through a 3D quasi-static stress MRI technique.
J Biomech. 2005 Mar;38(3):567-78. doi: 10.1016/j.jbiomech.2004.03.036.
7
Improved watershed transform for medical image segmentation using prior information.
IEEE Trans Med Imaging. 2004 Apr;23(4):447-58. doi: 10.1109/TMI.2004.824224.
8
Mutual-information-based registration of medical images: a survey.
IEEE Trans Med Imaging. 2003 Aug;22(8):986-1004. doi: 10.1109/TMI.2003.815867.
10
Segmentation of carpal bones from CT images using skeletally coupled deformable models.
Med Image Anal. 2003 Mar;7(1):21-45. doi: 10.1016/s1361-8415(02)00065-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验