Suppr超能文献

通过模糊连接性对4D动态上呼吸道磁共振图像进行最小交互分割。

Minimally interactive segmentation of 4D dynamic upper airway MR images via fuzzy connectedness.

作者信息

Tong Yubing, Udupa Jayaram K, Odhner Dewey, Wu Caiyun, Sin Sanghun, Wagshul Mark E, Arens Raanan

机构信息

Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104.

Division of Respiratory and Sleep Medicine, The Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York 10467.

出版信息

Med Phys. 2016 May;43(5):2323. doi: 10.1118/1.4945698.

Abstract

PURPOSE

There are several disease conditions that lead to upper airway restrictive disorders. In the study of these conditions, it is important to take into account the dynamic nature of the upper airway. Currently, dynamic magnetic resonance imaging is the modality of choice for studying these diseases. Unfortunately, the contrast resolution obtainable in the images poses many challenges for an effective segmentation of the upper airway structures. No viable methods have been developed to date to solve this problem. In this paper, the authors demonstrate a practical solution by employing an iterative relative fuzzy connectedness delineation algorithm as a tool.

METHODS

3D dynamic images were collected at ten equally spaced instances over the respiratory cycle (i.e., 4D) in 20 female subjects with obstructive sleep apnea syndrome. The proposed segmentation approach consists of the following steps. First, image background nonuniformities are corrected which is then followed by a process to correct for the nonstandardness of MR image intensities. Next, standardized image intensity statistics are gathered for the nasopharynx and oropharynx portions of the upper airway as well as the surrounding soft tissue structures including air outside the body region, hard palate, soft palate, tongue, and other soft structures around the airway including tonsils (left and right) and adenoid. The affinity functions needed for fuzzy connectedness computation are derived based on these tissue intensity statistics. In the next step, seeds for fuzzy connectedness computation are specified for the airway and the background tissue components. Seed specification is needed in only the 3D image corresponding to the first time instance of the 4D volume; from this information, the 3D volume corresponding to the first time point is segmented. Seeds are automatically generated for the next time point from the segmentation of the 3D volume corresponding to the previous time point, and the process continues and runs without human interaction and completes in 10 s for segmenting the airway structure in the whole 4D volume.

RESULTS

Qualitative evaluations performed to examine smoothness and continuity of motions of the entire upper airway as well as its transverse sections at critical anatomic locations indicate that the segmentations are consistent. Quantitative evaluations of the separate 200 3D volumes and the 20 4D volumes yielded true positive and false positive volume fractions around 95% and 0.1%, respectively, and mean boundary placement errors under 0.5 mm. The method is robust to variations in the subjective action of seed specification. Compared with a segmentation approach based on a registration technique to propagate segmentations, the proposed method is more efficient, accurate, and less prone to error propagation from one respiratory time point to the next.

CONCLUSIONS

The proposed method is the first demonstration of a viable and practical approach for segmenting the upper airway structures in dynamic MR images. Compared to registration-based methods, it effectively reduces error propagation and consequently achieves not only more accurate segmentations but also more consistent motion representation in the segmentations. The method is practical, requiring minimal user interaction and computational time.

摘要

目的

有多种疾病状况会导致上气道限制性疾病。在研究这些状况时,考虑上气道的动态特性很重要。目前,动态磁共振成像(MRI)是研究这些疾病的首选方式。不幸的是,图像中可获得的对比度分辨率给上气道结构的有效分割带来了诸多挑战。迄今为止,尚未开发出可行的方法来解决这个问题。在本文中,作者展示了一种实用的解决方案,即采用迭代相对模糊连接度描绘算法作为工具。

方法

在20名患有阻塞性睡眠呼吸暂停综合征的女性受试者的呼吸周期内,以十个等间隔的时刻采集3D动态图像(即4D)。所提出的分割方法包括以下步骤。首先,校正图像背景的不均匀性,然后进行一个校正MR图像强度非标准性的过程。接下来,收集上气道的鼻咽部和口咽部以及周围软组织结构(包括身体区域外的空气、硬腭、软腭、舌头以及气道周围的其他软结构,如扁桃体(左右)和腺样体)的标准化图像强度统计数据。基于这些组织强度统计数据推导模糊连接度计算所需的亲和函数。在下一步中,为气道和背景组织成分指定模糊连接度计算的种子。仅在与4D体积的第一个时刻对应的3D图像中需要指定种子;根据此信息,分割与第一个时间点对应的3D体积。从与前一个时间点对应的3D体积的分割中自动生成下一个时间点的种子,该过程持续进行且无需人工干预,在10秒内完成对整个4D体积中的气道结构的分割。

结果

对整个上气道及其关键解剖位置的横切面的运动平滑度和连续性进行的定性评估表明,分割结果是一致的。对单独的200个3D体积和20个四维体积的定量评估得出,真阳性和假阳性体积分数分别约为95%和0.1%,平均边界放置误差在0.5毫米以下。该方法对种子指定的主观操作变化具有鲁棒性。与基于配准技术传播分割结果的分割方法相比,所提出的方法更高效、准确,并且更不容易出现从一个呼吸时间点到下一个时间点的误差传播。

结论

所提出的方法首次展示了一种在动态MR图像中分割上气道结构的可行且实用的方法。与基于配准的方法相比,它有效地减少了误差传播,因此不仅实现了更准确的分割,而且在分割中实现了更一致的运动表示。该方法实用,所需的用户交互和计算时间最少。

相似文献

2
MR Image Analytics to Characterize the Upper Airway Structure in Obese Children with Obstructive Sleep Apnea Syndrome.
PLoS One. 2016 Aug 3;11(8):e0159327. doi: 10.1371/journal.pone.0159327. eCollection 2016.
4
Interactive iterative relative fuzzy connectedness lung segmentation on thoracic 4D dynamic MR images.
Proc SPIE Int Soc Opt Eng. 2017 Feb;10137. doi: 10.1117/12.2254968. Epub 2017 Mar 13.
5
3D airway segmentation via hyperpolarized 3He gas MRI by using scale-based fuzzy connectedness.
Comput Med Imaging Graph. 2004 Jan-Mar;28(1-2):77-86. doi: 10.1016/j.compmedimag.2003.06.001.
8
System for upper airway segmentation and measurement with MR imaging and fuzzy connectedness.
Acad Radiol. 2003 Jan;10(1):13-24. doi: 10.1016/s1076-6332(03)80783-3.

引用本文的文献

1
A systematic review on 4D images of the upper airway in patients with OSA.
Sleep Breath. 2024 May;28(2):597-606. doi: 10.1007/s11325-023-02948-4. Epub 2023 Dec 21.
2
Segmentation of 4D images via space-time neural networks.
Proc SPIE Int Soc Opt Eng. 2020 Feb;11317. doi: 10.1117/12.2549605. Epub 2020 Feb 28.
3
Interactive iterative relative fuzzy connectedness lung segmentation on thoracic 4D dynamic MR images.
Proc SPIE Int Soc Opt Eng. 2017 Feb;10137. doi: 10.1117/12.2254968. Epub 2017 Mar 13.

本文引用的文献

1
Pediatric sleep-related breathing disorders: advances in imaging and computational modeling.
IEEE Pulse. 2014 Sep-Oct;5(5):33-9. doi: 10.1109/MPUL.2014.2339293.
2
Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images.
Med Image Anal. 2014 Jul;18(5):752-71. doi: 10.1016/j.media.2014.04.003. Epub 2014 Apr 24.
3
A spatiotemporal-based scheme for efficient registration-based segmentation of thoracic 4-D MRI.
IEEE J Biomed Health Inform. 2014 May;18(3):969-77. doi: 10.1109/JBHI.2013.2282183. Epub 2013 Sep 16.
4
Physiological effects of obstructive sleep apnea syndrome in childhood.
Respir Physiol Neurobiol. 2013 Sep 15;188(3):370-82. doi: 10.1016/j.resp.2013.05.006. Epub 2013 May 23.
7
Registration-based segmentation of murine 4D cardiac micro-CT data using symmetric normalization.
Phys Med Biol. 2012 Oct 7;57(19):6125-45. doi: 10.1088/0031-9155/57/19/6125. Epub 2012 Sep 13.
8
A dual micro-CT system for small animal imaging.
Proc SPIE Int Soc Opt Eng. 2008 Apr 18;6913:691342. doi: 10.1117/12.772303.
9
Upper airway structure and body fat composition in obese children with obstructive sleep apnea syndrome.
Am J Respir Crit Care Med. 2011 Mar 15;183(6):782-7. doi: 10.1164/rccm.201008-1249OC. Epub 2010 Oct 8.
10
Intensity Standardization Simplifies Brain MR Image Segmentation.
Comput Vis Image Underst. 2009 Oct;113(10):1095-1103. doi: 10.1016/j.cviu.2009.06.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验