Suppr超能文献

一种将固定效应、随机效应和混合效应荟萃分析整合到结构方程模型中的模型。

A model for integrating fixed-, random-, and mixed-effects meta-analyses into structural equation modeling.

作者信息

Cheung Mike W-L

机构信息

Department of Psychology, Faculty of Arts and Social Sciences, National University of Singapore, Singapore.

出版信息

Psychol Methods. 2008 Sep;13(3):182-202. doi: 10.1037/a0013163.

Abstract

Meta-analysis and structural equation modeling (SEM) are two important statistical methods in the behavioral, social, and medical sciences. They are generally treated as two unrelated topics in the literature. The present article proposes a model to integrate fixed-, random-, and mixed-effects meta-analyses into the SEM framework. By applying an appropriate transformation on the data, studies in a meta-analysis can be analyzed as subjects in a structural equation model. This article also highlights some practical benefits of using the SEM approach to conduct a meta-analysis. Specifically, the SEM-based meta-analysis can be used to handle missing covariates, to quantify the heterogeneity of effect sizes, and to address the heterogeneity of effect sizes with mixture models. Examples are used to illustrate the equivalence between the conventional meta-analysis and the SEM-based meta-analysis. Future directions on and issues related to the SEM-based meta-analysis are discussed.

摘要

元分析和结构方程模型(SEM)是行为科学、社会科学和医学领域中两种重要的统计方法。在文献中,它们通常被视为两个不相关的主题。本文提出了一个模型,将固定效应、随机效应和混合效应元分析整合到结构方程模型框架中。通过对数据进行适当的变换,元分析中的研究可以作为结构方程模型中的个体进行分析。本文还强调了使用结构方程模型方法进行元分析的一些实际优势。具体而言,基于结构方程模型的元分析可用于处理缺失的协变量、量化效应量的异质性以及使用混合模型解决效应量的异质性问题。文中通过实例说明了传统元分析与基于结构方程模型的元分析之间的等效性。同时讨论了基于结构方程模型的元分析的未来发展方向及相关问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验