Suppr超能文献

从密集纵向数据中得出的个体内动态指标的可靠性估计和抽样误差校正。

Estimating reliabilities and correcting for sampling error in indices of within-person dynamics derived from intensive longitudinal data.

机构信息

Dornsife Center for Self-Report Science & Center for Economic and Social Research, University of Southern California, 635 Downey Way, Los Angeles, CA, 90089-3332, USA.

Department of Psychology, University of Southern California, Los Angeles, CA, USA.

出版信息

Behav Res Methods. 2023 Oct;55(7):3872-3891. doi: 10.3758/s13428-022-01995-1. Epub 2022 Oct 19.

Abstract

Psychology has witnessed a dramatic increase in the use of intensive longitudinal data (ILD) to study within-person processes, accompanied by a growing number of indices used to capture individual differences in within-person dynamics (WPD). The reliability of WPD indices is rarely investigated and reported in empirical studies. Unreliability in these indices can bias parameter estimates and yield erroneous conclusions. We propose an approach to (a) estimate the reliability and (b) correct for sampling error of WPD indices using "Level-1 variance-known" (V-known) multilevel models (Raudenbush & Bryk, 2002). When WPD indices are calculated for each individual, the sampling variance of the observed WPD scores is typically falsely assumed to be zero. V-known models replace this "zero" with an approximate sampling variance fixed at Level 1 to estimate the true variance of the index at Level 2, following random effects meta-analysis principles. We demonstrate how V-known models can be applied to a broad range of emotion dynamics commonly derived from ILD, including indices of the average level (mean), variability (intraindividual standard deviation), instability (probability of acute change), bipolarity (correlation), differentiation (intraclass correlation), inertia (autocorrelation), and relative variability (relative standard deviation) of emotions. A simulation study shows the usefulness of V-known models to recover the true reliability of these indices. Using a 21-day diary study, we illustrate the implementation of the proposed approach to obtain reliability estimates and to correct for unreliability of WPD indices in real data. The techniques may facilitate psychometrically sound inferences from WPD indices in this burgeoning research area.

摘要

心理学领域见证了密集纵向数据(ILD)在个体内过程研究中的广泛应用,同时也出现了越来越多用于捕捉个体内动态差异(WPD)的指标。然而,个体内动态差异指标的可靠性在实证研究中很少得到调查和报告。这些指标的不可靠性可能会导致参数估计偏差,并得出错误的结论。我们提出了一种使用“一级方差已知”(V-已知)多层模型(Raudenbush & Bryk, 2002)来估计和纠正 WPD 指标的抽样误差的方法。当为每个个体计算 WPD 指标时,观察到的 WPD 分数的抽样方差通常被错误地假设为零。V-已知模型用在一级固定的近似抽样方差替换这个“零”,以根据随机效应荟萃分析原理,在二级估计指标的真实方差。我们展示了 V-已知模型如何应用于广泛的常见密集纵向数据衍生的情绪动态,包括情绪的平均水平(均值)、变异性(个体内标准差)、不稳定性(急性变化的概率)、双极性(相关性)、分化(组内相关)、惯性(自相关)和相对变异性(相对标准差)的指标。一项模拟研究表明,V-已知模型对于恢复这些指标的真实可靠性是有用的。通过 21 天的日记研究,我们说明了所提出的方法在真实数据中获得可靠性估计和纠正 WPD 指标的不可靠性的实现。这些技术可能有助于在这个蓬勃发展的研究领域中,对 WPD 指标进行心理测量上可靠的推断。

相似文献

1
Estimating reliabilities and correcting for sampling error in indices of within-person dynamics derived from intensive longitudinal data.
Behav Res Methods. 2023 Oct;55(7):3872-3891. doi: 10.3758/s13428-022-01995-1. Epub 2022 Oct 19.
2
Measurement error and person-specific reliability in multilevel autoregressive modeling.
Psychol Methods. 2019 Feb;24(1):70-91. doi: 10.1037/met0000188. Epub 2018 Sep 6.
3
Reliabilities of Intraindividual Variability Indicators with Autocorrelated Longitudinal Data: Implications for Longitudinal Study Designs.
Multivariate Behav Res. 2018 Jul-Aug;53(4):502-520. doi: 10.1080/00273171.2018.1457939. Epub 2018 Apr 23.
5
Disentangling temporal dynamics in attention bias from measurement error: A state-space modeling approach.
J Abnorm Psychol. 2021 Feb;130(2):198-210. doi: 10.1037/abn0000657. Epub 2020 Dec 14.
6
Skewness and Staging: Does the Floor Effect Induce Bias in Multilevel AR(1) Models?
Multivariate Behav Res. 2024 Mar-Apr;59(2):289-319. doi: 10.1080/00273171.2023.2254769. Epub 2023 Dec 31.
8
What's in a Day? A Guide to Decomposing the Variance in Intensive Longitudinal Data.
Front Psychol. 2016 Jun 14;7:891. doi: 10.3389/fpsyg.2016.00891. eCollection 2016.

本文引用的文献

1
Explaining age differences in the memory-experience gap.
Psychol Aging. 2021 Sep;36(6):679-693. doi: 10.1037/pag0000628.
2
The application of meta-analytic (multi-level) models with multiple random effects: A systematic review.
Behav Res Methods. 2020 Oct;52(5):2031-2052. doi: 10.3758/s13428-020-01373-9.
3
A primer on two-level dynamic structural equation models for intensive longitudinal data in Mplus.
Psychol Methods. 2020 Oct;25(5):610-635. doi: 10.1037/met0000250. Epub 2019 Dec 19.
4
The measurement of within-person affect variation.
Emotion. 2020 Jun;20(4):677-699. doi: 10.1037/emo0000583. Epub 2019 Apr 22.
5
Complex affect dynamics add limited information to the prediction of psychological well-being.
Nat Hum Behav. 2019 May;3(5):478-491. doi: 10.1038/s41562-019-0555-0. Epub 2019 Apr 15.
6
Bias caused by sampling error in meta-analysis with small sample sizes.
PLoS One. 2018 Sep 13;13(9):e0204056. doi: 10.1371/journal.pone.0204056. eCollection 2018.
7
Reliabilities of Intraindividual Variability Indicators with Autocorrelated Longitudinal Data: Implications for Longitudinal Study Designs.
Multivariate Behav Res. 2018 Jul-Aug;53(4):502-520. doi: 10.1080/00273171.2018.1457939. Epub 2018 Apr 23.
8
Sidelining the mean: The relative variability index as a generic mean-corrected variability measure for bounded variables.
Psychol Methods. 2018 Dec;23(4):690-707. doi: 10.1037/met0000153. Epub 2018 Apr 12.
9
At the Frontiers of Modeling Intensive Longitudinal Data: Dynamic Structural Equation Models for the Affective Measurements from the COGITO Study.
Multivariate Behav Res. 2018 Nov-Dec;53(6):820-841. doi: 10.1080/00273171.2018.1446819. Epub 2018 Apr 6.
10
The bipolarity of affect and depressive symptoms.
J Pers Soc Psychol. 2018 Feb;114(2):323-341. doi: 10.1037/pspp0000186.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验