Suppr超能文献

大鼠β(1,4)-N-乙酰葡糖胺基转移酶III在烟草中的表达重塑了植物特异性N-糖基化。

Expression of rat beta(1,4)-N-acetylglucosaminyltransferase III in Nicotiana tabacum remodels the plant-specific N-glycosylation.

作者信息

Frey Alexander D, Karg Saskia R, Kallio Pauli T

机构信息

Institute of Microbiology, ETH Zürich, CH-8093 Zurich, Switzerland.

出版信息

Plant Biotechnol J. 2009 Jan;7(1):33-48. doi: 10.1111/j.1467-7652.2008.00370.x. Epub 2008 Sep 3.

Abstract

Plant N-linked glycans differ substantially from their mammalian counterparts, mainly with respect to modifications of the core glycan, which typically contains a beta(1,2)-xylose and an alpha(1,3)-fucose. The addition of a bisecting N-acetylglucosamine residue by beta(1,4)-N-acetylglucosaminyltransferase III (GnTIII) is known to control the processing of N-linked glycans in mammals, for example by preventing alpha(1,6)-fucosylation of the core glycan. In order to outcompete plant-specific beta(1,2)-xylose and alpha(1,3)-fucose modifications, rat GnTIII was expressed either with its native localization domain (GnTIII) or with the cytoplasmic tail, transmembrane domain and stem region (CTS) of Arabidopsis thaliana mannosidase II (ManII) (GnTIII(A.th.)). Both CTSs targeted enhanced yellow fluorescent protein (eYFP) to a brefeldin A-sensitive compartment, indicative of Golgi localization. GnTIII expression increased the fraction of N-glycans devoid of xylose and fucose from 13% +/- 7% in wild-type plants to 60% +/- 8% in plants expressing GnTIII(A.th.). N-Glycans of plants expressing rat GnTIII contained three major glycan structures of complex bisected, complex, or hybrid bisected type, accounting for 70%-85% of the total N-glycans. On expression of GnTIII(A.th.), N-glycans displayed a higher heterogeneity and were of hybrid type. Co-expression of A. thaliana ManII significantly increased the amount of complex bisected structures relative to the plants expressing GnTIII or GnTIII(A.th.), whereas co-expression of human ManII did not redirect the pool of hybrid structures towards complex-type structures. The method described offers the advantage that it can be implemented in any desired plant system for effective removal of beta(1,2)-xylose and alpha(1,3)-fucose from the N-glycan.

摘要

植物的N-连接聚糖与哺乳动物的N-连接聚糖有很大不同,主要体现在核心聚糖的修饰方面,植物核心聚糖通常含有一个β(1,2)-木糖和一个α(1,3)-岩藻糖。已知β(1,4)-N-乙酰葡糖胺基转移酶III(GnTIII)添加一个平分型N-乙酰葡糖胺残基可控制哺乳动物中N-连接聚糖的加工过程,例如通过阻止核心聚糖的α(1,6)-岩藻糖基化。为了克服植物特有的β(1,2)-木糖和α(1,3)-岩藻糖修饰,大鼠GnTIII以其天然定位结构域(GnTIII)或与拟南芥甘露糖苷酶II(ManII)的胞质尾、跨膜结构域和茎区(CTS)一起表达(GnTIII(A.th.))。两种CTS都将增强型黄色荧光蛋白(eYFP)靶向到对布雷菲德菌素A敏感的区室,表明其定位于高尔基体。GnTIII的表达使不含木糖和岩藻糖的N-聚糖比例从野生型植物中的13%±7%增加到表达GnTIII(A.th.)的植物中的60%±8%。表达大鼠GnTIII的植物的N-聚糖包含三种主要的聚糖结构,即复杂平分型、复杂型或杂合平分型,占总N-聚糖的70%-85%。在表达GnTIII(A.th.)时,N-聚糖表现出更高的异质性且为杂合型。拟南芥ManII的共表达相对于表达GnTIII或GnTIII(A.th.)的植物显著增加了复杂平分型结构的数量,而人ManII的共表达并未使杂合型结构库转向复杂型结构。所述方法的优点在于它可以在任何所需的植物系统中实施,以有效去除N-聚糖中的β(1,2)-木糖和α(1,3)-岩藻糖。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验