Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA.
Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
Int J Biol Macromol. 2020 Aug 15;157:158-169. doi: 10.1016/j.ijbiomac.2020.04.199. Epub 2020 Apr 26.
Plant-based expression system has many potential advantages to produce biopharmaceuticals, but plants cannot be directly used to express human glycoproteins because of their differences in glycosylation abilities from mammals. To exploit plant-based expression system for producing recombinant human erythropoietin (rhuEPO), we glycoengineered tobacco plants by stably introducing seven to eight mammalian genes including a target human EPO into tobacco in order to generate capacities for β1,4-galactosylation, bisecting N-acetylglucosamine (GlcNAc) and sialylation. Wild type human β1,4-galactosyltransferase gene (GalT) or a chimeric GalT gene (ST/GalT) was co-expressed to produce rhuEPO bearing β1,4-galactose-extended N-glycan chains as well as compare their β1,4-galactosylation efficiencies. Five mammalian genes encoding enzymes/transporter for sialic acid biosynthesis, transport and transfer were co-expressed to build sialylation capacity in plants. The human MGAT3 was co-expressed to produce N-glycan chains with bisecting GlcNAc. Our results demonstrated that the above transgenes were incorporated into tobacco genome and transcribed. ST/GalT was found to be more efficient than GalT for β1,4-galactosylation. Furthermore, co-expressing MGAT3 generated N-glycans likely bearing bisected GlcNAc. However, our current efforts did not result in generating sialylation capacity. Created transgenic plants expressing EPO and ST/GalT could be used to produce rhuEPO with high proportion of β1,4-galactose-extended N-glycan chains for tissue protective purposes.
植物表达系统在生产生物制药方面具有许多潜在的优势,但由于植物在糖基化能力上与哺乳动物存在差异,因此不能直接用于表达人类糖蛋白。为了利用植物表达系统生产重组人促红细胞生成素(rhuEPO),我们通过稳定地将包括靶标人类 EPO 在内的七到八个哺乳动物基因导入烟草,对烟草进行糖基工程改造,以产生β1,4-半乳糖基化、双分支 N-乙酰葡萄糖胺(GlcNAc)和唾液酸化的能力。同时共表达野生型人β1,4-半乳糖基转移酶基因(GalT)或嵌合 GalT 基因(ST/GalT),以产生具有β1,4-半乳糖延伸 N-聚糖链的 rhuEPO,并比较它们的β1,4-半乳糖基化效率。还共表达了五个编码唾液酸生物合成、运输和转移的酶/转运蛋白的哺乳动物基因,以在植物中建立唾液酸化能力。共表达人 MGAT3 以产生具有双分支 GlcNAc 的 N-聚糖链。我们的结果表明,上述转基因已整合到烟草基因组中并转录。ST/GalT 被发现比 GalT 更有效地进行β1,4-半乳糖基化。此外,共表达 MGAT3 产生的 N-聚糖可能带有分支的 GlcNAc。然而,我们目前的努力并没有产生唾液酸化能力。表达 EPO 和 ST/GalT 的转基因植物可用于生产具有高比例β1,4-半乳糖延伸 N-聚糖链的 rhuEPO,用于组织保护目的。