Suykens Johan A K
Katholieke Universiteit Leuven, ESAT-SCD/SISTA,B-3001 Leuven, Heverlee, Belgium.
IEEE Trans Neural Netw. 2008 Sep;19(9):1501-17. doi: 10.1109/TNN.2008.2000807.
In this paper, a new kernel-based method for data visualization and dimensionality reduction is proposed. A reference point is considered corresponding to additional constraints taken in the problem formulation. In contrast with the class of kernel eigenmap methods, the solution (coordinates in the low-dimensional space) is characterized by a linear system instead of an eigenvalue problem. The kernel maps with a reference point are generated from a least squares support vector machine (LS-SVM) core part that is extended with an additional regularization term for preserving local mutual distances together with reference point constraints. The kernel maps possess primal and dual model representations and provide out-of-sample extensions, e.g., for validation-based tuning. The method is illustrated on toy problems and real-life data sets.
本文提出了一种基于核的新型数据可视化和降维方法。在问题表述中考虑了一个参考点,以对应额外的约束条件。与核特征映射方法不同,该解决方案(低维空间中的坐标)由线性系统而非特征值问题来表征。带有参考点的核映射由最小二乘支持向量机(LS-SVM)核心部分生成,该部分通过添加一个额外的正则化项进行扩展,以保留局部相互距离并结合参考点约束。核映射具有原始模型和对偶模型表示,并提供样本外扩展,例如用于基于验证的调优。该方法在简单问题和实际数据集上进行了说明。