Suppr超能文献

分裂复数反向传播算法中的初始值分析。

Analysis of the initial values in split-complex backpropagation algorithm.

作者信息

Yang Sheng-Sung, Siu Sammy, Ho Chia-Lu

机构信息

Institute of Electrical Engineering, National CentralUniversity, Chung-Li 32054, Taiwan, ROC.

出版信息

IEEE Trans Neural Netw. 2008 Sep;19(9):1564-73. doi: 10.1109/TNN.2008.2000805.

Abstract

When a multilayer perceptron (MLP) is trained with the split-complex backpropagation (SCBP) algorithm, one observes a relatively strong dependence of the performance on the initial values. For the effective adjustments of the weights and biases in SCBP, we propose that the range of the initial values should be greater than that of the adjustment quantities. This criterion can reduce the misadjustment of the weights and biases. Based on the this criterion, the suitable range of the initial values can be estimated. The results show that the suitable range of the initial values depends on the property of the used communication channel and the structure of the MLP (the number of layers and the number of nodes in each layer). The results are studied using the equalizer scenarios. The simulation results show that the estimated range of the initial values gives significantly improved performance.

摘要

当使用分裂复数反向传播(SCBP)算法训练多层感知器(MLP)时,人们会观察到性能对初始值有较强的依赖性。为了在SCBP中有效调整权重和偏差,我们提出初始值的范围应大于调整量的范围。该准则可以减少权重和偏差的误调整。基于此准则,可以估计初始值的合适范围。结果表明,初始值的合适范围取决于所使用通信信道的特性和MLP的结构(层数和每层中的节点数)。使用均衡器场景对结果进行了研究。仿真结果表明,初始值的估计范围能显著提高性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验