Yang Sheng-Sung, Siu Sammy, Ho Chia-Lu
Institute of Electrical Engineering, National CentralUniversity, Chung-Li 32054, Taiwan, ROC.
IEEE Trans Neural Netw. 2008 Sep;19(9):1564-73. doi: 10.1109/TNN.2008.2000805.
When a multilayer perceptron (MLP) is trained with the split-complex backpropagation (SCBP) algorithm, one observes a relatively strong dependence of the performance on the initial values. For the effective adjustments of the weights and biases in SCBP, we propose that the range of the initial values should be greater than that of the adjustment quantities. This criterion can reduce the misadjustment of the weights and biases. Based on the this criterion, the suitable range of the initial values can be estimated. The results show that the suitable range of the initial values depends on the property of the used communication channel and the structure of the MLP (the number of layers and the number of nodes in each layer). The results are studied using the equalizer scenarios. The simulation results show that the estimated range of the initial values gives significantly improved performance.
当使用分裂复数反向传播(SCBP)算法训练多层感知器(MLP)时,人们会观察到性能对初始值有较强的依赖性。为了在SCBP中有效调整权重和偏差,我们提出初始值的范围应大于调整量的范围。该准则可以减少权重和偏差的误调整。基于此准则,可以估计初始值的合适范围。结果表明,初始值的合适范围取决于所使用通信信道的特性和MLP的结构(层数和每层中的节点数)。使用均衡器场景对结果进行了研究。仿真结果表明,初始值的估计范围能显著提高性能。