Charles Mathieu, Belcram Harry, Just Jérémy, Huneau Cécile, Viollet Agnès, Couloux Arnaud, Segurens Béatrice, Carter Meredith, Huteau Virginie, Coriton Olivier, Appels Rudi, Samain Sylvie, Chalhoub Boulos
Organization and Evolution of Plant Genomes, Unite de Recherche en Genomique Vegetale, Evry Cedex, France.
Genetics. 2008 Oct;180(2):1071-86. doi: 10.1534/genetics.108.092304. Epub 2008 Sep 9.
Transposable elements (TEs) constitute >80% of the wheat genome but their dynamics and contribution to size variation and evolution of wheat genomes (Triticum and Aegilops species) remain unexplored. In this study, 10 genomic regions have been sequenced from wheat chromosome 3B and used to constitute, along with all publicly available genomic sequences of wheat, 1.98 Mb of sequence (from 13 BAC clones) of the wheat B genome and 3.63 Mb of sequence (from 19 BAC clones) of the wheat A genome. Analysis of TE sequence proportions (as percentages), ratios of complete to truncated copies, and estimation of insertion dates of class I retrotransposons showed that specific types of TEs have undergone waves of differential proliferation in the B and A genomes of wheat. While both genomes show similar rates and relatively ancient proliferation periods for the Athila retrotransposons, the Copia retrotransposons proliferated more recently in the A genome whereas Gypsy retrotransposon proliferation is more recent in the B genome. It was possible to estimate for the first time the proliferation periods of the abundant CACTA class II DNA transposons, relative to that of the three main retrotransposon superfamilies. Proliferation of these TEs started prior to and overlapped with that of the Athila retrotransposons in both genomes. However, they also proliferated during the same periods as Gypsy and Copia retrotransposons in the A genome, but not in the B genome. As estimated from their insertion dates and confirmed by PCR-based tracing analysis, the majority of differential proliferation of TEs in B and A genomes of wheat (87 and 83%, respectively), leading to rapid sequence divergence, occurred prior to the allotetraploidization event that brought them together in Triticum turgidum and Triticum aestivum, <0.5 million years ago. More importantly, the allotetraploidization event appears to have neither enhanced nor repressed retrotranspositions. We discuss the apparent proliferation of TEs as resulting from their insertion, removal, and/or combinations of both evolutionary forces.
转座元件(TEs)占小麦基因组的比例超过80%,但其动态变化以及对小麦基因组(普通小麦属和山羊草属物种)大小变异和进化的贡献仍未得到探索。在本研究中,对小麦3B染色体的10个基因组区域进行了测序,并与所有公开可用的小麦基因组序列一起,构建了1.98 Mb的小麦B基因组序列(来自13个BAC克隆)和3.63 Mb的小麦A基因组序列(来自19个BAC克隆)。对TE序列比例(以百分比表示)、完整拷贝与截短拷贝的比率以及I类逆转录转座子插入日期的估计表明,特定类型的TEs在小麦的B基因组和A基因组中经历了不同的增殖浪潮。虽然两个基因组中Athila逆转录转座子的增殖速率相似且增殖时期相对古老,但Copia逆转录转座子在A基因组中的增殖时间较近,而Gypsy逆转录转座子在B基因组中的增殖时间更近。首次有可能估计出丰富的CACTA II类DNA转座子相对于三个主要逆转录转座子超家族的增殖时期。这些TEs的增殖在两个基因组中均在Athila逆转录转座子之前开始,并与之重叠。然而,它们在A基因组中与Gypsy和Copia逆转录转座子在同一时期增殖,但在B基因组中并非如此。根据它们的插入日期估计并通过基于PCR的追踪分析证实,小麦B基因组和A基因组中TEs的大多数差异增殖(分别为87%和83%),导致快速的序列分歧,发生在不到50万年前将它们聚集在硬粒小麦和普通小麦中的异源四倍体化事件之前。更重要的是,异源四倍体化事件似乎既没有增强也没有抑制逆转录转座。我们讨论了TEs明显的增殖是由它们的插入、去除和/或这两种进化力量的组合导致的。