Foll Matthieu, Gaggiotti Oscar
Laboratoire d'Ecologie Alpine, 38041 Grenoble Cedex 09, France.
Genetics. 2008 Oct;180(2):977-93. doi: 10.1534/genetics.108.092221. Epub 2008 Sep 9.
Identifying loci under natural selection from genomic surveys is of great interest in different research areas. Commonly used methods to separate neutral effects from adaptive effects are based on locus-specific population differentiation coefficients to identify outliers. Here we extend such an approach to estimate directly the probability that each locus is subject to selection using a Bayesian method. We also extend it to allow the use of dominant markers like AFLPs. It has been shown that this model is robust to complex demographic scenarios for neutral genetic differentiation. Here we show that the inclusion of isolated populations that underwent a strong bottleneck can lead to a high rate of false positives. Nevertheless, we demonstrate that it is possible to avoid them by carefully choosing the populations that should be included in the analysis. We analyze two previously published data sets: a human data set of codominant markers and a Littorina saxatilis data set of dominant markers. We also perform a detailed sensitivity study to compare the power of the method using amplified fragment length polymorphism (AFLP), SNP, and microsatellite markers. The method has been implemented in a new software available at our website (http://www-leca.ujf-grenoble.fr/logiciels.htm).
从基因组调查中识别自然选择下的基因座在不同研究领域备受关注。常用的区分中性效应和适应性效应的方法是基于基因座特异性的群体分化系数来识别异常值。在此,我们扩展了这样一种方法,使用贝叶斯方法直接估计每个基因座受到选择的概率。我们还对其进行扩展,以允许使用如扩增片段长度多态性(AFLP)等显性标记。已有研究表明,该模型对于中性遗传分化的复杂种群统计学情景具有稳健性。在此我们表明,纳入经历强烈瓶颈效应的孤立种群会导致高假阳性率。然而,我们证明通过仔细选择应纳入分析的种群可以避免这种情况。我们分析了两个先前发表的数据集:一个是共显性标记的人类数据集,另一个是显性标记的岩滨螺数据集。我们还进行了详细的敏感性研究,以比较使用扩增片段长度多态性(AFLP)、单核苷酸多态性(SNP)和微卫星标记时该方法的效能。该方法已在我们网站(http://www-leca.ujf-grenoble.fr/logiciels.htm)上提供的一个新软件中实现。