Miller Judith R, Wood Bryan P, Hamilton Matthew B
Department of Mathematics, Georgetown University, Washington, DC 20057, USA.
Genetics. 2008 Oct;180(2):1023-37. doi: 10.1534/genetics.108.092031. Epub 2008 Sep 9.
A commonly used test for natural selection has been to compare population differentiation for neutral molecular loci estimated by F(ST) and for the additive genetic component of quantitative traits estimated by Q(ST). Past analytical and empirical studies have led to the conclusion that when averaged over replicate evolutionary histories, Q(ST) = F(ST) under neutrality. We used analytical and simulation techniques to study the impact of stochastic fluctuation among replicate outcomes of an evolutionary process, or the evolutionary variance, of Q(ST) and F(ST) for a neutral quantitative trait determined by n unlinked diallelic loci with additive gene action. We studied analytical models of two scenarios. In one, a pair of demes has recently been formed through subdivision of a panmictic population; in the other, a pair of demes has been evolving in allopatry for a long time. A rigorous analysis of these two models showed that in general, it is not necessarily true that mean Q(ST) = F(ST) (across evolutionary replicates) for a neutral, additive quantitative trait. In addition, we used finite-island model simulations to show there is a strong positive correlation between Q(ST) and the difference Q(ST) - F(ST) because the evolutionary variance of Q(ST) is much larger than that of F(ST). If traits with relatively large Q(ST) values are preferentially sampled for study, the difference between Q(ST) and F(ST) will also be large and positive because of this correlation. Many recent studies have used tests of the null hypothesis Q(ST) = F(ST) to identify diversifying or uniform selection among subpopulations for quantitative traits. Our findings suggest that the distributions of Q(ST) and F(ST) under the null hypothesis of neutrality will depend on species-specific biology such as the number of subpopulations and the history of subpopulation divergence. In addition, the manner in which researchers select quantitative traits for study may introduce bias into the tests. As a result, researchers must be cautious before concluding that selection is occurring when Q(ST) not equal F(ST).
一种常用的自然选择测试方法是比较通过F(ST)估计的中性分子位点的群体分化,以及通过Q(ST)估计的数量性状的加性遗传成分。过去的分析和实证研究得出结论,在中性条件下,当对重复的进化历史进行平均时,Q(ST)=F(ST)。我们使用分析和模拟技术来研究进化过程的重复结果之间的随机波动,即进化方差,对由n个具有加性基因作用的不连锁双等位基因位点决定的中性数量性状的Q(ST)和F(ST)的影响。我们研究了两种情况的分析模型。一种情况是,通过随机交配群体的细分最近形成了一对种群;另一种情况是,一对种群在异域长期进化。对这两个模型的严格分析表明,一般来说,对于中性的加性数量性状,平均Q(ST)=F(ST)(跨进化重复)并不一定成立。此外,我们使用有限岛屿模型模拟表明,Q(ST)与差异Q(ST)-F(ST)之间存在很强的正相关,因为Q(ST)的进化方差远大于F(ST)的进化方差。如果优先选择Q(ST)值相对较大的性状进行研究,由于这种相关性,Q(ST)与F(ST)之间的差异也将很大且为正。最近许多研究使用零假设Q(ST)=F(ST)的检验来识别亚种群之间数量性状的多样化或均匀选择。我们的研究结果表明,在中性零假设下,Q(ST)和F(ST)的分布将取决于物种特异性生物学特征,如亚种群数量和亚种群分化历史。此外,研究人员选择数量性状进行研究的方式可能会给检验带来偏差。因此,在得出当Q(ST)不等于F(ST)时存在选择的结论之前,研究人员必须谨慎。