Suppr超能文献

在……比较中的错误率取决于遗传结构和估计程序。 (原文中“in - comparisons”部分有缺失内容)

Error rates in - comparisons depend on genetic architecture and estimation procedures.

作者信息

Liu Junjian J, Edge Michael D

机构信息

Department of Quantitative and Computational Biology, University of Southern California.

出版信息

bioRxiv. 2024 Nov 1:2024.10.28.620737. doi: 10.1101/2024.10.28.620737.

Abstract

Genetic and phenotypic variation among populations is one of the fundamental subjects of evolutionary genetics. One question that arises often in data on natural populations is whether differentiation among populations on a particular trait might be caused in part by natural selection. For the past several decades, researchers have used approaches to compare the amount of trait differentiation among populations on one or more traits (measured by the statistic ) with differentiation on genome-wide genetic variants (measured by ). Theory says that under neutrality, and should be approximately equal in expectation, so values much larger than are consistent with local adaptation driving subpopulations' trait values apart, and values much smaller than are consistent with stabilizing selection on similar optima. At the same time, investigators have differed in their definitions of genome-wide (such as "ratio of averages" vs. "average of ratios" versions of ) and in their definitions of the variance components in . Here, we show that these details matter. Different versions of and have different interpretations in terms of coalescence time, and comparing incompatible statistics can lead to elevated type I error rates, with some choices leading to type I error rates near one when the nominal rate is 5%. We conduct simulations under varying genetic architectures and forms of population structure and show how they affect the distribution of . When many loci influence the trait, our simulations support procedures grounded in a coalescent-based framework for neutral phenotytpic differentiation.

摘要

群体间的遗传和表型变异是进化遗传学的基本主题之一。在自然群体数据中经常出现的一个问题是,特定性状在群体间的分化是否可能部分由自然选择引起。在过去几十年中,研究人员采用各种方法,将一个或多个性状在群体间的分化量(由统计量 衡量)与全基因组遗传变异的分化(由 衡量)进行比较。理论表明,在中性条件下,预期 和 应大致相等,因此 值远大于 与局部适应导致亚群体性状值分化一致,而 值远小于 与对相似最优值的稳定选择一致。同时,研究人员在全基因组 的定义(如“平均值之比”与“比值的平均值”版本的 )以及 中方差成分的定义上存在差异。在这里,我们表明这些细节很重要。 和 的不同版本在合并时间方面有不同的解释,比较不兼容的统计量会导致I型错误率升高,当名义错误率为5%时,某些选择会导致I型错误率接近1。我们在不同的遗传结构和群体结构形式下进行模拟,并展示它们如何影响 的分布。当许多基因座影响该性状时,我们的模拟支持基于合并框架的中性表型分化程序。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验