Martin Guillaume, Chapuis Elodie, Goudet Jérôme
Département d'Ecologie et Evolution, Université de Lausanne, CH 1015 Lausanne, Switzerland.
Genetics. 2008 Dec;180(4):2135-49. doi: 10.1534/genetics.107.080820. Epub 2008 Feb 3.
Neutrality tests in quantitative genetics provide a statistical framework for the detection of selection on polygenic traits in wild populations. However, the existing method based on comparisons of divergence at neutral markers and quantitative traits (Q(st)-F(st)) suffers from several limitations that hinder a clear interpretation of the results with typical empirical designs. In this article, we propose a multivariate extension of this neutrality test based on empirical estimates of the among-populations (D) and within-populations (G) covariance matrices by MANOVA. A simple pattern is expected under neutrality: D = 2F(st)/(1 - F(st))G, so that neutrality implies both proportionality of the two matrices and a specific value of the proportionality coefficient. This pattern is tested using Flury's framework for matrix comparison [common principal-component (CPC) analysis], a well-known tool in G matrix evolution studies. We show the importance of using a Bartlett adjustment of the test for the small sample sizes typically found in empirical studies. We propose a dual test: (i) that the proportionality coefficient is not different from its neutral expectation [2F(st)/(1 - F(st))] and (ii) that the MANOVA estimates of mean square matrices between and among populations are proportional. These two tests combined provide a more stringent test for neutrality than the classic Q(st)-F(st) comparison and avoid several statistical problems. Extensive simulations of realistic empirical designs suggest that these tests correctly detect the expected pattern under neutrality and have enough power to efficiently detect mild to strong selection (homogeneous, heterogeneous, or mixed) when it is occurring on a set of traits. This method also provides a rigorous and quantitative framework for disentangling the effects of different selection regimes and of drift on the evolution of the G matrix. We discuss practical requirements for the proper application of our test in empirical studies and potential extensions.
数量遗传学中的中性检验为检测野生种群中多基因性状的选择提供了一个统计框架。然而,现有的基于中性标记和数量性状分歧比较的方法(Qst - Fst)存在若干局限性,这阻碍了对典型实证设计结果的清晰解读。在本文中,我们基于多变量方差分析(MANOVA)对种群间(D)和种群内(G)协方差矩阵的实证估计,提出了这种中性检验的多变量扩展。在中性条件下预期会出现一种简单模式:D = 2Fst / (1 - Fst)G,因此中性意味着两个矩阵成比例且比例系数有特定值。使用弗勒里矩阵比较框架[共同主成分(CPC)分析]来检验这种模式,这是G矩阵进化研究中的一个知名工具。我们展示了在实证研究中通常遇到的小样本量情况下,对检验进行巴特利特调整的重要性。我们提出一种双重检验:(i)比例系数与其中性预期[2Fst / (1 - Fst)]没有差异,以及(ii)种群间和种群内均方矩阵的MANOVA估计成比例。这两个检验相结合,比经典的Qst - Fst比较提供了更严格的中性检验,并避免了几个统计问题。对现实实证设计的广泛模拟表明,这些检验能正确检测中性条件下的预期模式,并且在一组性状上发生轻度至强烈选择(同质、异质或混合)时,有足够的能力有效检测到这种选择。该方法还为区分不同选择机制和漂变对G矩阵进化的影响提供了一个严格且定量的框架。我们讨论了在实证研究中正确应用我们的检验的实际要求以及潜在扩展。