Suppr超能文献

抑制后反弹尖峰受视交叉上核中膜超极化历史的调节。

Postinhibitory rebound spikes are modulated by the history of membrane hyperpolarization in the SCN.

作者信息

Tremere Liisa A, Pinaud Raphael, Irwin Robert P, Allen Charles N

机构信息

CROET, OHSU, Portland, OR, USA.

出版信息

Eur J Neurosci. 2008 Sep;28(6):1127-35. doi: 10.1111/j.1460-9568.2008.06410.x. Epub 2008 Sep 9.

Abstract

The suprachiasmatic nucleus (SCN) of the hypothalamus regulates biological circadian time thereby directly impacting numerous physiological processes. The SCN is composed almost exclusively of gamma-aminobutyric acid (GABA)ergic neurons, many of which synapse with other GABAergic cells in the SCN to exert an inhibitory influence on their postsynaptic targets for most, if not all, phases of the circadian cycle. The overwhelmingly GABAergic nature of the SCN, along with its internal connectivity properties, provide a strong model to examine how inhibitory neurotransmission generates output signals. In the present work we show that hyperpolarizations that range from 5 to 1000 ms elicit rebound spikes in 63% of all SCN neurons tested in voltage-clamp in the SCN of adult rats and hamsters. In current-clamp recordings, hyperpolarizations led to rebound spike formation in all cells; however, low-amplitude or short-duration current injections failed to consistently activate rebound spikes. Increasing the duration of hyperpolarization from 5 to 1000 ms is strongly and positively correlated with enhanced spike probability. Additionally, the magnitude of hyperpolarization exerts a strong influence on both the amplitude of the spike, as revealed by voltage-clamp recordings, and the latency to peak current obtained in either voltage- or current-clamp mode. Our results suggest that SCN neurons may use rebound spikes as one means of producing output signals from a largely interconnected network of GABAergic neurons.

摘要

下丘脑的视交叉上核(SCN)调节生物昼夜节律,从而直接影响众多生理过程。SCN几乎完全由γ-氨基丁酸(GABA)能神经元组成,其中许多神经元与SCN中的其他GABA能细胞形成突触,在昼夜节律周期的大部分(如果不是全部)阶段对其突触后靶点施加抑制性影响。SCN压倒性的GABA能性质及其内部连接特性,为研究抑制性神经传递如何产生输出信号提供了一个有力的模型。在本研究中,我们发现,在成年大鼠和仓鼠的SCN中,在电压钳实验中,5到1000毫秒的超极化在所有测试的SCN神经元中有63%引发了反弹峰电位。在电流钳记录中,超极化在所有细胞中都导致了反弹峰电位的形成;然而,低幅度或短持续时间的电流注入未能持续激活反弹峰电位。将超极化的持续时间从5毫秒增加到1000毫秒与增强的峰电位概率呈强正相关。此外,超极化的幅度对峰电位的幅度(如电压钳记录所示)以及在电压钳或电流钳模式下获得的峰值电流潜伏期都有很大影响。我们的结果表明,SCN神经元可能将反弹峰电位作为从一个主要由GABA能神经元相互连接的网络产生输出信号的一种方式。

相似文献

1
Postinhibitory rebound spikes are modulated by the history of membrane hyperpolarization in the SCN.
Eur J Neurosci. 2008 Sep;28(6):1127-35. doi: 10.1111/j.1460-9568.2008.06410.x. Epub 2008 Sep 9.
3
Retrograde suppression of GABAergic currents in a subset of SCN neurons.
Eur J Neurosci. 2006 Jun;23(12):3209-16. doi: 10.1111/j.1460-9568.2006.04850.x.
7
Membrane properties and synaptic inputs of suprachiasmatic nucleus neurons in rat brain slices.
J Physiol. 1997 Feb 15;499 ( Pt 1)(Pt 1):141-59. doi: 10.1113/jphysiol.1997.sp021917.
8
Membrane properties and morphology of vasopressin neurons in slices of rat suprachiasmatic nucleus.
J Neurophysiol. 1998 Nov;80(5):2710-7. doi: 10.1152/jn.1998.80.5.2710.
9
Electrophysiological and morphological heterogeneity of neurons in slices of rat suprachiasmatic nucleus.
J Physiol. 1998 Feb 1;506 ( Pt 3)(Pt 3):775-93. doi: 10.1111/j.1469-7793.1998.775bv.x.

引用本文的文献

1
Bioresorbable thin-film silicon diodes for the optoelectronic excitation and inhibition of neural activities.
Nat Biomed Eng. 2023 Apr;7(4):486-498. doi: 10.1038/s41551-022-00931-0. Epub 2022 Sep 5.
3
OFF-responses of interneurons optimize avoidance behaviors depending on stimulus strength via electrical synapses.
PLoS Genet. 2018 Jun 25;14(6):e1007477. doi: 10.1371/journal.pgen.1007477. eCollection 2018 Jun.
4
Intracellular Chloride Regulation in AVP+ and VIP+ Neurons of the Suprachiasmatic Nucleus.
Sci Rep. 2017 Aug 31;7(1):10226. doi: 10.1038/s41598-017-09778-x.

本文引用的文献

1
Mechanism underlying rebound excitation in retinal ganglion cells.
Vis Neurosci. 2007 Sep-Oct;24(5):709-31. doi: 10.1017/S0952523807070654. Epub 2007 Oct 1.
2
Intercellular coupling confers robustness against mutations in the SCN circadian clock network.
Cell. 2007 May 4;129(3):605-16. doi: 10.1016/j.cell.2007.02.047.
3
GABA and Gi/o differentially control circadian rhythms and synchrony in clock neurons.
Proc Natl Acad Sci U S A. 2006 Dec 12;103(50):19188-93. doi: 10.1073/pnas.0607466103. Epub 2006 Nov 30.
5
VIP receptors control excitability of suprachiasmatic nuclei neurones.
Pflugers Arch. 2006 Apr;452(1):7-15. doi: 10.1007/s00424-005-0003-z. Epub 2005 Nov 8.
7
Mechanism of spontaneous firing in dorsomedial suprachiasmatic nucleus neurons.
J Neurosci. 2004 Sep 15;24(37):7985-98. doi: 10.1523/JNEUROSCI.2146-04.2004.
8
Clustering through postinhibitory rebound in synaptically coupled neurons.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jul;70(1 Pt 1):011908. doi: 10.1103/PhysRevE.70.011908. Epub 2004 Jul 15.
9
GABAergic synapses of the suprachiasmatic nucleus exhibit a diurnal rhythm of short-term synaptic plasticity.
Eur J Neurosci. 2004 May;19(10):2791-8. doi: 10.1111/j.1460-9568.2004.03382.x.
10
Circadian rhythm in inhibitory synaptic transmission in the mouse suprachiasmatic nucleus.
J Neurophysiol. 2004 Jul;92(1):311-9. doi: 10.1152/jn.01078.2003. Epub 2004 Feb 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验