Suppr超能文献

一种用于实时智能闭路电视系统在人群中跟踪多个物体的高效顺序方法。

An efficient sequential approach to tracking multiple objects through crowds for real-time intelligent CCTV systems.

作者信息

Li Liyuan, Huang Weimin, Gu Irene Yu-Hua, Luo Ruijiang, Tian Qi

机构信息

Institute for InfocommResearch, Singapore 119613.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 2008 Oct;38(5):1254-69. doi: 10.1109/TSMCB.2008.927265.

Abstract

Efficiency and robustness are the two most important issues for multiobject tracking algorithms in real-time intelligent video surveillance systems. We propose a novel 2.5-D approach to real-time multiobject tracking in crowds, which is formulated as a maximum a posteriori estimation problem and is approximated through an assignment step and a location step. Observing that the occluding object is usually less affected by the occluded objects, sequential solutions for the assignment and the location are derived. A novel dominant color histogram (DCH) is proposed as an efficient object model. The DCH can be regarded as a generalized color histogram, where dominant colors are selected based on a given distance measure. Comparing with conventional color histograms, the DCH only requires a few color components (31 on average). Furthermore, our theoretical analysis and evaluation on real data have shown that DCHs are robust to illumination changes. Using the DCH, efficient implementations of sequential solutions for the assignment and location steps are proposed. The assignment step includes the estimation of the depth order for the objects in a dispersing group, one-by-one assignment, and feature exclusion from the group representation. The location step includes the depth-order estimation for the objects in a new group, the two-phase mean-shift location, and the exclusion of tracked objects from the new position in the group. Multiobject tracking results and evaluation from public data sets are presented. Experiments on image sequences captured from crowded public environments have shown good tracking results, where about 90% of the objects have been successfully tracked with the correct identification numbers by the proposed method. Our results and evaluation have indicated that the method is efficient and robust for tracking multiple objects (>or= 3) in complex occlusion for real-world surveillance scenarios.

摘要

对于实时智能视频监控系统中的多目标跟踪算法而言,效率和鲁棒性是两个最为重要的问题。我们提出了一种新颖的2.5维方法用于人群中的实时多目标跟踪,该方法被表述为一个最大后验估计问题,并通过一个分配步骤和一个定位步骤进行近似求解。观察到被遮挡物体通常受遮挡物体的影响较小,从而推导出分配和定位的顺序求解方法。提出了一种新颖的主颜色直方图(DCH)作为一种有效的目标模型。DCH可被视为一种广义颜色直方图,其中主颜色是基于给定的距离度量来选择的。与传统颜色直方图相比,DCH仅需要少量颜色分量(平均31个)。此外,我们对真实数据的理论分析和评估表明,DCH对光照变化具有鲁棒性。利用DCH,提出了用于分配和定位步骤的顺序求解方法的高效实现。分配步骤包括对分散组中物体深度顺序的估计、逐个分配以及从组表示中排除特征。定位步骤包括对新组中物体的深度顺序估计、两阶段均值漂移定位以及从组中的新位置排除已跟踪物体。给出了来自公共数据集的多目标跟踪结果及评估。对从拥挤公共环境中捕获的图像序列进行的实验显示出了良好的跟踪结果,通过所提出的方法,约90%的物体已被成功跟踪且具有正确的识别编号。我们的结果和评估表明,该方法对于在复杂遮挡情况下的多目标(≥3个)跟踪在实际监控场景中是高效且鲁棒的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验