Rajapakse J C, Giedd J N, Rapoport J L
Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD 20892-1600, USA.
IEEE Trans Med Imaging. 1997 Apr;16(2):176-86. doi: 10.1109/42.563663.
A statistical model is presented that represents the distributions of major tissue classes in single-channel magnetic resonance (MR) cerebral images. Using the model, cerebral images are segmented into gray matter, white matter, and cerebrospinal fluid (CSF). The model accounts for random noise, magnetic field inhomogeneities, and biological variations of the tissues. Intensity measurements are modeled by a finite Gaussian mixture. Smoothness and piecewise contiguous nature of the tissue regions are modeled by a three-dimensional (3-D) Markov random field (MRF). A segmentation algorithm, based on the statistical model, approximately finds the maximum a posteriori (MAP) estimation of the segmentation and estimates the model parameters from the image data. The proposed scheme for segmentation is based on the iterative conditional modes (ICM) algorithm in which measurement model parameters are estimated using local information at each site, and the prior model parameters are estimated using the segmentation after each cycle of iterations. Application of the algorithm to a sample of clinical MR brain scans, comparisons of the algorithm with other statistical methods, and a validation study with a phantom are presented. The algorithm constitutes a significant step toward a complete data driven unsupervised approach to segmentation of MR images in the presence of the random noise and intensity inhomogeneities.
提出了一种统计模型,该模型表示单通道磁共振(MR)脑图像中主要组织类别的分布。使用该模型,脑图像被分割为灰质、白质和脑脊液(CSF)。该模型考虑了随机噪声、磁场不均匀性以及组织的生物学变异。强度测量由有限高斯混合模型建模。组织区域的平滑性和分段连续性由三维(3-D)马尔可夫随机场(MRF)建模。基于该统计模型的分割算法近似地找到分割的最大后验(MAP)估计,并从图像数据估计模型参数。所提出的分割方案基于迭代条件模式(ICM)算法,其中测量模型参数使用每个位置的局部信息进行估计,并且先验模型参数在每次迭代循环后使用分割进行估计。展示了该算法在临床MR脑扫描样本上的应用、该算法与其他统计方法的比较以及使用体模的验证研究。该算法朝着在存在随机噪声和强度不均匀性的情况下对MR图像进行完全数据驱动的无监督分割方法迈出了重要一步。