Suppr超能文献

噬菌体φX174蛋白E对MraY抑制作用的遗传分析

Genetic analysis of MraY inhibition by the phiX174 protein E.

作者信息

Zheng Yi, Struck Douglas K, Bernhardt Thomas G, Young Ry

机构信息

Department of Biochemistry and Biophysics, Texas A & M University, College Station, Texas 77843-2128, USA.

出版信息

Genetics. 2008 Nov;180(3):1459-66. doi: 10.1534/genetics.108.093443. Epub 2008 Sep 14.

Abstract

Protein E, the lysis protein of bacteriophage phiX174, is a specific inhibitor of MraY, the phospho-MurNAc-pentapeptide translocase that catalyzes the synthesis of lipid I in the conserved pathway for peptidoglycan biosynthesis. The original evidence for this inhibition was the isolation of two spontaneous E-resistance mraY mutants. Here we report further genetic studies aimed at dissecting the interaction between E and MraY, using a genetic strategy that is facile, rapid, and does not depend on the availability of purified E, purified MraY, or its substrates. This system relies on the ability of mraY or its enzymatically inactive D267N allele to protect cells from lysis after induction of a chimeric lambda :: E prophage. Using this approach, the MraY protein from Bacillus subtilis, which shares 43% sequence identity with the Escherichia coli enzyme, was found to interact weakly, if at all, with E. A potential E binding site defined by transmembrane domains 5 and 9 has been identified by isolating more mraY mutants resistant to E inhibition. Genetic analysis indicates that these E-resistant alleles fall into three classes on the basis of the affinity of the encoded proteins for MraY.

摘要

噬菌体φX174的裂解蛋白E是MraY的特异性抑制剂,MraY是磷酸化MurNAc-五肽转位酶,在肽聚糖生物合成的保守途径中催化脂质I的合成。这种抑制作用的最初证据是分离出两个自发的E抗性mraY突变体。在此,我们报告了进一步的遗传学研究,旨在剖析E与MraY之间的相互作用,采用一种简便、快速且不依赖于纯化的E、纯化的MraY或其底物可用性的遗传策略。该系统依赖于mraY或其无酶活性的D267N等位基因在诱导嵌合λ::E原噬菌体后保护细胞免于裂解的能力。使用这种方法,发现与大肠杆菌酶具有43%序列同一性的枯草芽孢杆菌的MraY蛋白与E的相互作用微弱(如果有的话)。通过分离更多对E抑制有抗性的mraY突变体,确定了由跨膜结构域5和9定义的潜在E结合位点。遗传分析表明,这些E抗性等位基因根据编码蛋白对MraY的亲和力分为三类。

相似文献

1
Genetic analysis of MraY inhibition by the phiX174 protein E.
Genetics. 2008 Nov;180(3):1459-66. doi: 10.1534/genetics.108.093443. Epub 2008 Sep 14.
2
Purification and functional characterization of phiX174 lysis protein E.
Biochemistry. 2009 Jun 9;48(22):4999-5006. doi: 10.1021/bi900469g.
7
Minimal requirements for inhibition of MraY by lysis protein E from bacteriophage ΦX174.
Mol Microbiol. 2012 Sep;85(5):975-85. doi: 10.1111/j.1365-2958.2012.08153.x. Epub 2012 Jul 13.
9
Phospho-MurNAc-pentapeptide translocase (MraY) as a target for antibacterial agents and antibacterial proteins.
Infect Disord Drug Targets. 2006 Jun;6(2):85-106. doi: 10.2174/187152606784112128.
10
New Insight into the Catalytic Mechanism of Bacterial MraY from Enzyme Kinetics and Docking Studies.
J Biol Chem. 2016 Jul 15;291(29):15057-68. doi: 10.1074/jbc.M116.717884. Epub 2016 May 18.

引用本文的文献

1
Bacteriophage-encoded protein utilization in bacterial ghost production: a mini-review.
World J Microbiol Biotechnol. 2024 Jul 29;40(9):284. doi: 10.1007/s11274-024-04091-y.
2
Breaking down the cell wall: Still an attractive antibacterial strategy.
Front Microbiol. 2022 Sep 23;13:952633. doi: 10.3389/fmicb.2022.952633. eCollection 2022.
3
Mismatch-CRISPRi Reveals the Co-varying Expression-Fitness Relationships of Essential Genes in Escherichia coli and Bacillus subtilis.
Cell Syst. 2020 Nov 18;11(5):523-535.e9. doi: 10.1016/j.cels.2020.09.009. Epub 2020 Oct 19.
4
Single-gene lysis in the metagenomic era.
Curr Opin Microbiol. 2020 Aug;56:109-117. doi: 10.1016/j.mib.2020.09.015. Epub 2020 Oct 16.
5
Phage single-gene lysis: Finding the weak spot in the bacterial cell wall.
J Biol Chem. 2019 Mar 8;294(10):3350-3358. doi: 10.1074/jbc.TM118.001773. Epub 2018 Nov 12.
6
Mutational analysis of the MS2 lysis protein L.
Microbiology (Reading). 2017 Jul;163(7):961-969. doi: 10.1099/mic.0.000485. Epub 2017 Jul 21.
9
The Membrane Steps of Bacterial Cell Wall Synthesis as Antibiotic Targets.
Antibiotics (Basel). 2016 Aug 26;5(3):28. doi: 10.3390/antibiotics5030028.
10
New Insight into the Catalytic Mechanism of Bacterial MraY from Enzyme Kinetics and Docking Studies.
J Biol Chem. 2016 Jul 15;291(29):15057-68. doi: 10.1074/jbc.M116.717884. Epub 2016 May 18.

本文引用的文献

2
MemBrain: improving the accuracy of predicting transmembrane helices.
PLoS One. 2008 Jun 11;3(6):e2399. doi: 10.1371/journal.pone.0002399.
3
Evolutionary dominance of holin lysis systems derives from superior genetic malleability.
Microbiology (Reading). 2008 Jun;154(Pt 6):1710-1718. doi: 10.1099/mic.0.2008/016956-0.
4
The biosynthesis of peptidoglycan lipid-linked intermediates.
FEMS Microbiol Rev. 2008 Mar;32(2):208-33. doi: 10.1111/j.1574-6976.2007.00089.x. Epub 2007 Dec 10.
6
Phospho-MurNAc-pentapeptide translocase (MraY) as a target for antibacterial agents and antibacterial proteins.
Infect Disord Drug Targets. 2006 Jun;6(2):85-106. doi: 10.2174/187152606784112128.
7
Periplasmic domains define holin-antiholin interactions in t4 lysis inhibition.
J Bacteriol. 2005 Oct;187(19):6631-40. doi: 10.1128/JB.187.19.6631-6640.2005.
9
Breaking free: "protein antibiotics" and phage lysis.
Res Microbiol. 2002 Oct;153(8):493-501. doi: 10.1016/s0923-2508(02)01330-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验