Division of Chemistry and Chemical Engineering, California Institute of Technology, M/C 114-96, Pasadena, CA 91125, USA.
Mol Microbiol. 2012 Sep;85(5):975-85. doi: 10.1111/j.1365-2958.2012.08153.x. Epub 2012 Jul 13.
The DNA phage ΦX174 encodes the integral membrane protein E whose expression leads to host cell lysis by inhibition of the peptidoglycan synthesis enzyme MraY. Here we use mutagenesis to characterize the molecular details of the E lysis mechanism. We find that a minimal 18-residue region with the modified wild-type sequences of the conserved transmembrane helix of E is sufficient to lyse host cells and that specific residues within and at the boundaries of this helix are important for activity. This suggests that positioning of the helix in the membrane is critical for interactions with MraY. We further characterize the interaction site of the transmembrane helix with MraY demonstrating E forms a stable complex with MraY. Triggering cell lysis by peptidoglycan synthesis inhibition is a traditional route for antimicrobial strategies. Understanding the mechanism of bacterial cell lysis by E will provide insights into new antimicrobial strategies using re-engineered E peptides.
ΦX174 噬菌体的 DNA 编码整合膜蛋白 E,其表达通过抑制肽聚糖合成酶 MraY 导致宿主细胞裂解。在这里,我们使用诱变来描述 E 裂解机制的分子细节。我们发现,一个最小的 18 个残基区域,具有保守跨膜螺旋的修饰野生型序列的 E 足以裂解宿主细胞,并且该螺旋内和边界处的特定残基对于活性很重要。这表明跨膜螺旋在膜中的定位对于与 MraY 的相互作用至关重要。我们进一步表征了跨膜螺旋与 MraY 的相互作用位点,证明 E 与 MraY 形成稳定的复合物。通过抑制肽聚糖合成触发细胞裂解是传统的抗菌策略途径。了解 E 引起细菌细胞裂解的机制将为使用经过重新设计的 E 肽的新型抗菌策略提供见解。