Semmler Alexander, Hermann Sven, Mormann Florian, Weberpals Marc, Paxian Stephan A, Okulla Thorsten, Schäfers Michael, Kummer Markus P, Klockgether Thomas, Heneka Michael T
Department of Neurology, University Bonn, Bonn, Germany.
J Neuroinflammation. 2008 Sep 15;5:38. doi: 10.1186/1742-2094-5-38.
Septic encephalopathy is a severe brain dysfunction caused by systemic inflammation in the absence of direct brain infection. Changes in cerebral blood flow, release of inflammatory molecules and metabolic alterations contribute to neuronal dysfunction and cell death.
To investigate the relation of electrophysiological, metabolic and morphological changes caused by SE, we simultaneously assessed systemic circulation, regional cerebral blood flow and cortical electroencephalography in rats exposed to bacterial lipopolysaccharide. Additionally, cerebral glucose uptake, astro- and microglial activation as well as changes of inflammatory gene transcription were examined by small animal PET using [18F]FDG, immunohistochemistry, and real time PCR.
While the systemic hemodynamic did not change significantly, regional cerebral blood flow was decreased in the cortex paralleled by a decrease of alpha activity of the electroencephalography. Cerebral glucose uptake was reduced in all analyzed neocortical areas, but preserved in the caudate nucleus, the hippocampus and the thalamus. Sepsis enhanced the transcription of several pro- and anti-inflammatory cytokines and chemokines including tumor necrosis factor alpha, interleukin-1 beta, transforming growth factor beta, and monocot chemoattractant protein 1 in the cerebrum. Regional analysis of different brain regions revealed an increase in ED1-positive microglia in the cortex, while total and neuronal cell counts decreased in the cortex and the hippocampus.
Together, the present study highlights the complexity of sepsis induced early impairment of neuronal metabolism and activity. Since our model uses techniques that determine parameters relevant to the clinical setting, it might be a useful tool to develop brain specific therapeutic strategies for human septic encephalopathy.
脓毒症性脑病是一种在无直接脑部感染情况下由全身炎症引起的严重脑功能障碍。脑血流量的变化、炎症分子的释放和代谢改变导致神经元功能障碍和细胞死亡。
为了研究脓毒症性脑病引起的电生理、代谢和形态学变化之间的关系,我们同时评估了暴露于细菌脂多糖的大鼠的体循环、局部脑血流量和皮质脑电图。此外,通过使用[18F]FDG的小动物PET、免疫组织化学和实时PCR检测脑葡萄糖摄取、星形胶质细胞和小胶质细胞激活以及炎症基因转录的变化。
虽然体循环血流动力学没有显著变化,但皮质局部脑血流量减少,同时脑电图的α活动也降低。所有分析的新皮质区域的脑葡萄糖摄取均减少,但尾状核、海马体和丘脑的葡萄糖摄取保持不变。脓毒症增强了大脑中几种促炎和抗炎细胞因子及趋化因子的转录,包括肿瘤坏死因子α、白细胞介素-1β、转化生长因子β和单核细胞趋化蛋白1。对不同脑区的区域分析显示,皮质中ED1阳性小胶质细胞增加,而皮质和海马体中的总细胞数和神经元细胞数减少。
本研究共同强调了脓毒症诱导的神经元代谢和活动早期损伤的复杂性。由于我们的模型使用了确定与临床情况相关参数的技术,它可能是开发针对人类脓毒症性脑病的脑特异性治疗策略的有用工具。