Suppr超能文献

啮齿动物嗅球中血流与神经元活动之间的关系。

The relationship between blood flow and neuronal activity in the rodent olfactory bulb.

作者信息

Chaigneau Emmanuelle, Tiret Pascale, Lecoq Jérôme, Ducros Mathieu, Knöpfel Thomas, Charpak Serge

机构信息

Institut National de la Santé et de la Recherche Médicale U603, Laboratory of Neurophysiology, Université Paris Descartes, 75006 Paris, France.

出版信息

J Neurosci. 2007 Jun 13;27(24):6452-60. doi: 10.1523/JNEUROSCI.3141-06.2007.

Abstract

In the brain, neuronal activation triggers an increase in cerebral blood flow (CBF). Here, we use two animal models and several techniques (two-photon imaging of CBF and neuronal calcium dynamics, intracellular and extracellular recordings, local pharmacology) to analyze the relationship between neuronal activity and local CBF during odor stimulation in the rodent olfactory bulb. Application of glutamate receptor antagonists or tetrodotoxin directly into single rat olfactory glomeruli blocked postsynaptic responses but did not affect the local odor-evoked CBF increases. This suggests that in our experimental conditions, odor always activates more than one glomerulus and that silencing one of a few clustered glomeruli does not affect the vascular response. To block synaptic transmission more widely, we then superfused glutamate antagonists over the surface of the olfactory bulb in transgenic G-CaMP2 mice. This was for two reasons: (1) mice have a thin olfactory nerve layer compared to rats and this will favor drug access to the glomerular layer, and (2) transgenic G-CaMP2 mice express the fluorescent calcium sensor protein G-CaMP2 in mitral cells. In G-CaMP2 mice, odor-evoked, odor-specific, and concentration-dependent calcium increases in glomeruli. Superfusion of glutamate receptor antagonists blocked odor-evoked postsynaptic calcium signals and CBF responses. We conclude that activation of postsynaptic glutamate receptors and rises in dendritic calcium are major steps for neurovascular coupling in olfactory bulb glomeruli.

摘要

在大脑中,神经元激活会引发脑血流量(CBF)增加。在此,我们使用两种动物模型和多种技术(CBF与神经元钙动力学的双光子成像、细胞内和细胞外记录、局部药理学)来分析啮齿动物嗅球在气味刺激期间神经元活动与局部CBF之间的关系。将谷氨酸受体拮抗剂或河豚毒素直接应用于单个大鼠嗅小球会阻断突触后反应,但不会影响局部气味诱发的CBF增加。这表明在我们的实验条件下,气味总是会激活不止一个小球,并且沉默少数几个聚集的小球之一不会影响血管反应。为了更广泛地阻断突触传递,我们随后在转基因G-CaMP2小鼠的嗅球表面灌注谷氨酸拮抗剂。这样做有两个原因:(1)与大鼠相比,小鼠的嗅神经层较薄,这有利于药物进入小球层,(2)转基因G-CaMP2小鼠在二尖瓣细胞中表达荧光钙传感器蛋白G-CaMP2。在G-CaMP2小鼠中,气味诱发、气味特异性且浓度依赖性的小球钙增加。灌注谷氨酸受体拮抗剂可阻断气味诱发的突触后钙信号和CBF反应。我们得出结论,突触后谷氨酸受体的激活和树突状钙的升高是嗅球小球中神经血管耦合的主要步骤。

相似文献

1
The relationship between blood flow and neuronal activity in the rodent olfactory bulb.
J Neurosci. 2007 Jun 13;27(24):6452-60. doi: 10.1523/JNEUROSCI.3141-06.2007.
2
Optical imaging of postsynaptic odor representation in the glomerular layer of the mouse olfactory bulb.
J Neurophysiol. 2009 Aug;102(2):817-30. doi: 10.1152/jn.00020.2009. Epub 2009 May 27.
3
SK channel regulation of dendritic excitability and dendrodendritic inhibition in the olfactory bulb.
J Neurophysiol. 2005 Dec;94(6):3743-50. doi: 10.1152/jn.00797.2005. Epub 2005 Aug 17.
4
Olfactory nerve-evoked, metabotropic glutamate receptor-mediated synaptic responses in rat olfactory bulb mitral cells.
J Neurophysiol. 2006 Apr;95(4):2233-41. doi: 10.1152/jn.01150.2005. Epub 2006 Jan 4.
5
Long-term depression at olfactory nerve synapses.
J Neurosci. 2005 Apr 27;25(17):4252-9. doi: 10.1523/JNEUROSCI.4721-04.2005.
6
Detecting activity in olfactory bulb glomeruli with astrocyte recording.
J Neurosci. 2005 Mar 16;25(11):2917-24. doi: 10.1523/JNEUROSCI.5042-04.2005.
9
Calcium permeable AMPA receptors and autoreceptors in external tufted cells of rat olfactory bulb.
Neuroscience. 2007 Feb 9;144(3):1094-108. doi: 10.1016/j.neuroscience.2006.10.041. Epub 2006 Dec 6.
10
Dendrodendritic recurrent excitation in mitral cells of the rat olfactory bulb.
J Neurophysiol. 1999 Jul;82(1):489-94. doi: 10.1152/jn.1999.82.1.489.

引用本文的文献

1
Pericyte pannexin1 controls cerebral capillary diameter and supports memory function.
Nat Commun. 2025 Jul 3;16(1):6128. doi: 10.1038/s41467-025-61312-0.
2
Optimized laser speckle-based imaging system and methods for deep tissue cerebral blood flow imaging in small rodents.
Neurophotonics. 2025 Apr;12(2):025017. doi: 10.1117/1.NPh.12.2.025017. Epub 2025 Jun 24.
4
Glial cells in the mammalian olfactory bulb.
Front Cell Neurosci. 2024 Jul 16;18:1426094. doi: 10.3389/fncel.2024.1426094. eCollection 2024.
5
7
Neurophotonic tools for microscopic measurements and manipulation: status report.
Neurophotonics. 2022 Jan;9(Suppl 1):013001. doi: 10.1117/1.NPh.9.S1.013001. Epub 2022 Apr 27.
8
The oxygen initial dip in the brain of anesthetized and awake mice.
Proc Natl Acad Sci U S A. 2022 Apr 5;119(14):e2200205119. doi: 10.1073/pnas.2200205119. Epub 2022 Mar 30.
10
Voluntary Behavior and Training Conditions Modulate Extracellular Glucose and Lactate in the Mouse Primary Motor Cortex.
Front Neurosci. 2022 Jan 4;15:732242. doi: 10.3389/fnins.2021.732242. eCollection 2021.

本文引用的文献

1
In vivo calcium imaging from genetically specified target cells in mouse cerebellum.
Neuroimage. 2007 Feb 1;34(3):859-69. doi: 10.1016/j.neuroimage.2006.10.021. Epub 2006 Dec 11.
3
Local potassium signaling couples neuronal activity to vasodilation in the brain.
Nat Neurosci. 2006 Nov;9(11):1397-1403. doi: 10.1038/nn1779.
5
Nonlinear neurovascular coupling in rat sensory cortex by activation of transcallosal fibers.
J Cereb Blood Flow Metab. 2007 Mar;27(3):575-87. doi: 10.1038/sj.jcbfm.9600372. Epub 2006 Aug 9.
6
Functional uncoupling of hemodynamic from neuronal response by inhibition of neuronal nitric oxide synthase.
J Cereb Blood Flow Metab. 2007 Apr;27(4):741-54. doi: 10.1038/sj.jcbfm.9600377. Epub 2006 Aug 2.
7
Spontaneous field potentials in the glomeruli of the olfactory bulb: the leading role of juxtaglomerular cells.
Neuroscience. 2006 Sep 29;142(1):203-21. doi: 10.1016/j.neuroscience.2006.05.068. Epub 2006 Jul 28.
8
Glutamatergic Control of Microvascular Tone by Distinct GABA Neurons in the Cerebellum.
J Neurosci. 2006 Jun 28;26(26):6997-7006. doi: 10.1523/JNEUROSCI.5515-05.2006.
9
Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo.
Nat Neurosci. 2006 Jun;9(6):816-23. doi: 10.1038/nn1703. Epub 2006 May 14.
10
Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling.
J Neurosci. 2006 Mar 15;26(11):2862-70. doi: 10.1523/JNEUROSCI.4048-05.2006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验