Suppr超能文献

使用广义莱曼模型分析放射性肺炎风险。

Analysis of radiation pneumonitis risk using a generalized Lyman model.

作者信息

Tucker Susan L, Liu H Helen, Liao Zhongxing, Wei Xiong, Wang Shulian, Jin Hekun, Komaki Ritsuko, Martel Mary K, Mohan Radhe

机构信息

Department of Bioinformatics and Computational Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA.

出版信息

Int J Radiat Oncol Biol Phys. 2008 Oct 1;72(2):568-74. doi: 10.1016/j.ijrobp.2008.04.053.

Abstract

PURPOSE

To introduce a version of the Lyman normal-tissue complication probability (NTCP) model adapted to incorporate censored time-to-toxicity data and clinical risk factors and to apply the generalized model to analysis of radiation pneumonitis (RP) risk.

METHODS AND MATERIALS

Medical records and radiation treatment plans were reviewed retrospectively for 576 patients with non-small cell lung cancer treated with radiotherapy. The time to severe (Grade >/=3) RP was computed, with event times censored at last follow-up for patients not experiencing this endpoint. The censored time-to-toxicity data were analyzed using the standard and generalized Lyman models with patient smoking status taken into account.

RESULTS

The generalized Lyman model with patient smoking status taken into account produced NTCP estimates up to 27 percentage points different from the model based on dose-volume factors alone. The generalized model also predicted that 8% of the expected cases of severe RP were unobserved because of censoring. The estimated volume parameter for lung was not significantly different from n = 1, corresponding to mean lung dose.

CONCLUSIONS

NTCP models historically have been based solely on dose-volume effects and binary (yes/no) toxicity data. Our results demonstrate that inclusion of nondosimetric risk factors and censored time-to-event data can markedly affect outcome predictions made using NTCP models.

摘要

目的

介绍一种经调整的莱曼正常组织并发症概率(NTCP)模型版本,该模型纳入了删失的毒性发生时间数据和临床风险因素,并将该广义模型应用于放射性肺炎(RP)风险分析。

方法与材料

对576例接受放射治疗的非小细胞肺癌患者的病历和放射治疗计划进行回顾性审查。计算出现严重(≥3级)RP的时间,对于未出现该终点的患者,事件时间在最后一次随访时删失。使用标准和广义莱曼模型分析删失的毒性发生时间数据,并考虑患者的吸烟状态。

结果

考虑患者吸烟状态的广义莱曼模型得出的NTCP估计值与仅基于剂量体积因素的模型相比,相差高达27个百分点。广义模型还预测,由于删失,8%的预期严重RP病例未被观察到。肺的估计体积参数与n = 1(对应平均肺剂量)无显著差异。

结论

历史上NTCP模型仅基于剂量体积效应和二元(是/否)毒性数据。我们的结果表明,纳入非剂量学风险因素和删失的事件发生时间数据会显著影响使用NTCP模型做出的结果预测。

相似文献

1
Analysis of radiation pneumonitis risk using a generalized Lyman model.
Int J Radiat Oncol Biol Phys. 2008 Oct 1;72(2):568-74. doi: 10.1016/j.ijrobp.2008.04.053.
2
Validation of Effective Dose as a Better Predictor of Radiation Pneumonitis Risk Than Mean Lung Dose: Secondary Analysis of a Randomized Trial.
Int J Radiat Oncol Biol Phys. 2019 Feb 1;103(2):403-410. doi: 10.1016/j.ijrobp.2018.09.029. Epub 2018 Oct 3.
5
Factors predicting radiation pneumonitis in lung cancer patients: a retrospective study.
Radiother Oncol. 2003 Jun;67(3):275-83. doi: 10.1016/s0167-8140(03)00119-1.
6
Lung Size and the Risk of Radiation Pneumonitis.
Int J Radiat Oncol Biol Phys. 2016 Feb 1;94(2):377-84. doi: 10.1016/j.ijrobp.2015.10.002. Epub 2015 Oct 9.
8
Incorporating single-nucleotide polymorphisms into the Lyman model to improve prediction of radiation pneumonitis.
Int J Radiat Oncol Biol Phys. 2013 Jan 1;85(1):251-7. doi: 10.1016/j.ijrobp.2012.02.021. Epub 2012 Apr 27.
9
Comparing different NTCP models that predict the incidence of radiation pneumonitis. Normal tissue complication probability.
Int J Radiat Oncol Biol Phys. 2003 Mar 1;55(3):724-35. doi: 10.1016/s0360-3016(02)03986-x.

引用本文的文献

1
NTCP-Based Prediction of Lung Sparing With IMPT in BC Patients and Implication of Patient Selection.
Int J Part Ther. 2025 Jun 24;17:101196. doi: 10.1016/j.ijpt.2025.101196. eCollection 2025 Sep.
2
Proton Therapy in Breast Cancer: A Review of Potential Approaches for Patient Selection.
Technol Cancer Res Treat. 2024 Jan-Dec;23:15330338241234788. doi: 10.1177/15330338241234788.
4
Image masking using convolutional networks improves performance classification of radiation pneumonitis for non-small cell lung cancer.
Phys Eng Sci Med. 2023 Jun;46(2):767-772. doi: 10.1007/s13246-023-01249-0. Epub 2023 Mar 28.
6
Promising Biomarkers of Radiation-Induced Lung Injury: A Review.
Biomedicines. 2021 Sep 8;9(9):1181. doi: 10.3390/biomedicines9091181.
10
A Primer on Dose-Response Data Modeling in Radiation Therapy.
Int J Radiat Oncol Biol Phys. 2021 May 1;110(1):11-20. doi: 10.1016/j.ijrobp.2020.11.020. Epub 2020 Dec 23.

本文引用的文献

2
The risk of early and late lung sequelae after conformal radiotherapy in breast cancer patients.
Int J Radiat Oncol Biol Phys. 2007 Jul 1;68(3):673-81. doi: 10.1016/j.ijrobp.2006.12.016. Epub 2007 Mar 9.
4
5
Modeling radiation pneumonitis risk with clinical, dosimetric, and spatial parameters.
Int J Radiat Oncol Biol Phys. 2006 May 1;65(1):112-24. doi: 10.1016/j.ijrobp.2005.11.046.
6
The impact of heterogeneity correction on dosimetric parameters that predict for radiation pneumonitis.
Int J Radiat Oncol Biol Phys. 2006 May 1;65(1):125-31. doi: 10.1016/j.ijrobp.2005.09.047. Epub 2006 Jan 19.
7
Correlation of dosimetric factors and radiation pneumonitis for non-small-cell lung cancer patients in a recently completed dose escalation study.
Int J Radiat Oncol Biol Phys. 2005 Nov 1;63(3):672-82. doi: 10.1016/j.ijrobp.2005.03.026. Epub 2005 Jun 4.
8
Regional differences in lung radiosensitivity after radiotherapy for non-small-cell lung cancer.
Int J Radiat Oncol Biol Phys. 2004 Nov 1;60(3):748-58. doi: 10.1016/j.ijrobp.2004.04.037.
9
CTCAE v3.0: development of a comprehensive grading system for the adverse effects of cancer treatment.
Semin Radiat Oncol. 2003 Jul;13(3):176-81. doi: 10.1016/S1053-4296(03)00031-6.
10
Factors predicting radiation pneumonitis in lung cancer patients: a retrospective study.
Radiother Oncol. 2003 Jun;67(3):275-83. doi: 10.1016/s0167-8140(03)00119-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验