Suppr超能文献

相似文献

3
Machine Learning to Build and Validate a Model for Radiation Pneumonitis Prediction in Patients with Non-Small Cell Lung Cancer.
Clin Cancer Res. 2019 Jul 15;25(14):4343-4350. doi: 10.1158/1078-0432.CCR-18-1084. Epub 2019 Apr 16.
5
Effect of normal lung definition on lung dosimetry and lung toxicity prediction in radiation therapy treatment planning.
Int J Radiat Oncol Biol Phys. 2013 Aug 1;86(5):956-63. doi: 10.1016/j.ijrobp.2013.05.003.
6
Multi-omics deep learning for radiation pneumonitis prediction in lung cancer patients underwent volumetric modulated arc therapy.
Comput Methods Programs Biomed. 2024 Sep;254:108295. doi: 10.1016/j.cmpb.2024.108295. Epub 2024 Jun 19.
9
Evaluating Which Dose-Function Metrics Are Most Critical for Functional-Guided Radiation Therapy.
Int J Radiat Oncol Biol Phys. 2017 Sep 1;99(1):202-209. doi: 10.1016/j.ijrobp.2017.03.051. Epub 2017 Apr 8.
10
Unraveling biophysical interactions of radiation pneumonitis in non-small-cell lung cancer via Bayesian network analysis.
Radiother Oncol. 2017 Apr;123(1):85-92. doi: 10.1016/j.radonc.2017.02.004. Epub 2017 Feb 22.

引用本文的文献

2
Deep learning-driven multi-omics analysis: enhancing cancer diagnostics and therapeutics.
Brief Bioinform. 2025 Jul 2;26(4). doi: 10.1093/bib/bbaf440.
3
Challenges and opportunities to integrate artificial intelligence in radiation oncology: a narrative review.
Ewha Med J. 2024 Oct;47(4):e49. doi: 10.12771/emj.2024.e49. Epub 2024 Oct 31.
7
Deep learning combining imaging, dose and clinical data for predicting bowel toxicity after pelvic radiotherapy.
Phys Imaging Radiat Oncol. 2025 Feb 1;33:100710. doi: 10.1016/j.phro.2025.100710. eCollection 2025 Jan.
8
Artificial intelligence in lung cancer: current applications, future perspectives, and challenges.
Front Oncol. 2024 Dec 23;14:1486310. doi: 10.3389/fonc.2024.1486310. eCollection 2024.
9
Machine learning in image-based outcome prediction after radiotherapy: A review.
J Appl Clin Med Phys. 2025 Jan;26(1):e14559. doi: 10.1002/acm2.14559. Epub 2024 Nov 18.

本文引用的文献

1
Adversarial Time-to-Event Modeling.
Proc Mach Learn Res. 2018 Jul;80:735-744.
2
Balancing accuracy and interpretability of machine learning approaches for radiation treatment outcomes modeling.
BJR Open. 2019 Jul 4;1(1):20190021. doi: 10.1259/bjro.20190021. eCollection 2019.
3
Machine Learning-Based Models for Prediction of Toxicity Outcomes in Radiotherapy.
Front Oncol. 2020 Jun 5;10:790. doi: 10.3389/fonc.2020.00790. eCollection 2020.
4
Introduction to machine and deep learning for medical physicists.
Med Phys. 2020 Jun;47(5):e127-e147. doi: 10.1002/mp.14140.
5
Machine learning for radiation outcome modeling and prediction.
Med Phys. 2020 Jun;47(5):e178-e184. doi: 10.1002/mp.13570.
6
7
Deep Learning: A Review for the Radiation Oncologist.
Front Oncol. 2019 Oct 1;9:977. doi: 10.3389/fonc.2019.00977. eCollection 2019.
9
Artificial Neural Network with Composite Architectures for Prediction of Local Control in Radiotherapy.
IEEE Trans Radiat Plasma Med Sci. 2019 Mar;3(2):242-249. doi: 10.1109/TRPMS.2018.2884134. Epub 2018 Nov 29.
10
A scalable discrete-time survival model for neural networks.
PeerJ. 2019 Jan 25;7:e6257. doi: 10.7717/peerj.6257. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验