Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan; Applied Physics Program, University of Michigan, Ann Arbor, Michigan.
Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan.
Int J Radiat Oncol Biol Phys. 2021 Jul 1;110(3):893-904. doi: 10.1016/j.ijrobp.2021.01.042. Epub 2021 Feb 1.
Novel actuarial deep learning neural network (ADNN) architectures are proposed for joint prediction of radiation therapy outcomes-radiation pneumonitis (RP) and local control (LC)-in stage III non-small cell lung cancer (NSCLC) patients. Unlike normal tissue complication probability/tumor control probability models that use dosimetric information solely, our proposed models consider complex interactions among multiomics information including positron emission tomography (PET) radiomics, cytokines, and miRNAs. Additional time-to-event information is also used in the actuarial prediction.
Three architectures were investigated: ADNN-DVH considered dosimetric information only; ADNN-com integrated multiomics information; and ADNN-com-joint combined RP2 (RP grade ≥2) and LC prediction. In these architectures, differential dose-volume histograms (DVHs) were fed into 1D convolutional neural networks (CNN) for extracting reduced representations. Variational encoders were used to learn representations of imaging and biological data. Reduced representations were fed into Surv-Nets to predict time-to-event probabilities for RP2 and LC independently and jointly by incorporating time information into designated loss functions.
Models were evaluated on 117 retrospective patients and were independently tested on 25 newly accrued patients prospectively. A multi-institutional RTOG0617 data set of 327 patients was used for external validation. ADNN-DVH yielded cross-validated c-indexes (95% confidence intervals) of 0.660 (0.630-0.690) for RP2 prediction and 0.727 (0.700-0.753) for LC prediction, outperforming a generalized Lyman model for RP2 (0.613 [0.583-0.643]) and a generalized log-logistic model for LC (0.569 [0.545-0.594]). The independent internal test and external validation yielded similar results. ADNN-com achieved an even better performance than ADNN-DVH on both cross-validation and independent internal test. Furthermore, ADNN-com-joint, which yielded performance similar to ADNN-com, realized joint prediction with c-indexes of 0.705 (0.676-0.734) for RP2 and 0.740 (0.714-0.765) for LC and achieved an area under a free-response receiving operator characteristic curve (AU-FROC) of 0.729 (0.697-0.773) for the joint prediction of RP2 and LC.
Novel deep learning architectures that integrate multiomics information outperformed traditional normal tissue complication probability/tumor control probability models in actuarial prediction of RP2 and LC.
本文提出了一种新的机器学习深度学习神经网络(ADNN)架构,用于联合预测 III 期非小细胞肺癌(NSCLC)患者的放疗结果——放射性肺炎(RP)和局部控制(LC)。与仅使用剂量学信息的正常组织并发症概率/肿瘤控制概率模型不同,我们提出的模型考虑了包括正电子发射断层扫描(PET)放射组学、细胞因子和 microRNA 在内的多组学信息之间的复杂相互作用。在风险预测中还使用了额外的生存时间信息。
研究了三种架构:仅考虑剂量学信息的 ADNN-DVH;集成多组学信息的 ADNN-com;以及联合预测 RP2(RP 分级≥2)和 LC 的 ADNN-com-joint。在这些架构中,差异剂量-体积直方图(DVH)被输入到一维卷积神经网络(CNN)中,以提取简化表示。变分编码器用于学习成像和生物数据的表示。简化表示被输入到 Surv-Nets 中,通过将时间信息纳入指定的损失函数,独立且联合地预测 RP2 和 LC 的生存时间概率。
模型在 117 名回顾性患者中进行了评估,并在 25 名新入组的前瞻性患者中进行了独立测试。327 名患者的多机构 RTOG0617 数据集用于外部验证。ADNN-DVH 在 RP2 预测的交叉验证一致性指数(95%置信区间)为 0.660(0.630-0.690),LC 预测的一致性指数为 0.727(0.700-0.753),优于 RP2 的广义 Lyman 模型(0.613[0.583-0.643])和 LC 的广义对数-逻辑模型(0.569[0.545-0.594])。独立的内部测试和外部验证得到了类似的结果。ADNN-com 在交叉验证和独立内部测试中的表现均优于 ADNN-DVH。此外,ADNN-com-joint 的表现与 ADNN-com 相似,实现了 RP2 和 LC 的联合预测,RP2 的一致性指数为 0.705(0.676-0.734),LC 的一致性指数为 0.740(0.714-0.765),用于 RP2 和 LC 联合预测的自由反应接收者操作特征曲线(AU-FROC)面积为 0.729(0.697-0.773)。
本文提出的新机器学习深度学习架构在预测 RP2 和 LC 的风险方面,优于传统的正常组织并发症概率/肿瘤控制概率模型,这些架构整合了多组学信息。