Suppr超能文献

将多组学信息整合到深度学习架构中,以预测非小细胞肺癌患者放疗后的联合预后。

Integrating Multiomics Information in Deep Learning Architectures for Joint Actuarial Outcome Prediction in Non-Small Cell Lung Cancer Patients After Radiation Therapy.

机构信息

Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan; Applied Physics Program, University of Michigan, Ann Arbor, Michigan.

Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan.

出版信息

Int J Radiat Oncol Biol Phys. 2021 Jul 1;110(3):893-904. doi: 10.1016/j.ijrobp.2021.01.042. Epub 2021 Feb 1.

Abstract

PURPOSE

Novel actuarial deep learning neural network (ADNN) architectures are proposed for joint prediction of radiation therapy outcomes-radiation pneumonitis (RP) and local control (LC)-in stage III non-small cell lung cancer (NSCLC) patients. Unlike normal tissue complication probability/tumor control probability models that use dosimetric information solely, our proposed models consider complex interactions among multiomics information including positron emission tomography (PET) radiomics, cytokines, and miRNAs. Additional time-to-event information is also used in the actuarial prediction.

METHODS AND MATERIALS

Three architectures were investigated: ADNN-DVH considered dosimetric information only; ADNN-com integrated multiomics information; and ADNN-com-joint combined RP2 (RP grade ≥2) and LC prediction. In these architectures, differential dose-volume histograms (DVHs) were fed into 1D convolutional neural networks (CNN) for extracting reduced representations. Variational encoders were used to learn representations of imaging and biological data. Reduced representations were fed into Surv-Nets to predict time-to-event probabilities for RP2 and LC independently and jointly by incorporating time information into designated loss functions.

RESULTS

Models were evaluated on 117 retrospective patients and were independently tested on 25 newly accrued patients prospectively. A multi-institutional RTOG0617 data set of 327 patients was used for external validation. ADNN-DVH yielded cross-validated c-indexes (95% confidence intervals) of 0.660 (0.630-0.690) for RP2 prediction and 0.727 (0.700-0.753) for LC prediction, outperforming a generalized Lyman model for RP2 (0.613 [0.583-0.643]) and a generalized log-logistic model for LC (0.569 [0.545-0.594]). The independent internal test and external validation yielded similar results. ADNN-com achieved an even better performance than ADNN-DVH on both cross-validation and independent internal test. Furthermore, ADNN-com-joint, which yielded performance similar to ADNN-com, realized joint prediction with c-indexes of 0.705 (0.676-0.734) for RP2 and 0.740 (0.714-0.765) for LC and achieved an area under a free-response receiving operator characteristic curve (AU-FROC) of 0.729 (0.697-0.773) for the joint prediction of RP2 and LC.

CONCLUSION

Novel deep learning architectures that integrate multiomics information outperformed traditional normal tissue complication probability/tumor control probability models in actuarial prediction of RP2 and LC.

摘要

目的

本文提出了一种新的机器学习深度学习神经网络(ADNN)架构,用于联合预测 III 期非小细胞肺癌(NSCLC)患者的放疗结果——放射性肺炎(RP)和局部控制(LC)。与仅使用剂量学信息的正常组织并发症概率/肿瘤控制概率模型不同,我们提出的模型考虑了包括正电子发射断层扫描(PET)放射组学、细胞因子和 microRNA 在内的多组学信息之间的复杂相互作用。在风险预测中还使用了额外的生存时间信息。

方法和材料

研究了三种架构:仅考虑剂量学信息的 ADNN-DVH;集成多组学信息的 ADNN-com;以及联合预测 RP2(RP 分级≥2)和 LC 的 ADNN-com-joint。在这些架构中,差异剂量-体积直方图(DVH)被输入到一维卷积神经网络(CNN)中,以提取简化表示。变分编码器用于学习成像和生物数据的表示。简化表示被输入到 Surv-Nets 中,通过将时间信息纳入指定的损失函数,独立且联合地预测 RP2 和 LC 的生存时间概率。

结果

模型在 117 名回顾性患者中进行了评估,并在 25 名新入组的前瞻性患者中进行了独立测试。327 名患者的多机构 RTOG0617 数据集用于外部验证。ADNN-DVH 在 RP2 预测的交叉验证一致性指数(95%置信区间)为 0.660(0.630-0.690),LC 预测的一致性指数为 0.727(0.700-0.753),优于 RP2 的广义 Lyman 模型(0.613[0.583-0.643])和 LC 的广义对数-逻辑模型(0.569[0.545-0.594])。独立的内部测试和外部验证得到了类似的结果。ADNN-com 在交叉验证和独立内部测试中的表现均优于 ADNN-DVH。此外,ADNN-com-joint 的表现与 ADNN-com 相似,实现了 RP2 和 LC 的联合预测,RP2 的一致性指数为 0.705(0.676-0.734),LC 的一致性指数为 0.740(0.714-0.765),用于 RP2 和 LC 联合预测的自由反应接收者操作特征曲线(AU-FROC)面积为 0.729(0.697-0.773)。

结论

本文提出的新机器学习深度学习架构在预测 RP2 和 LC 的风险方面,优于传统的正常组织并发症概率/肿瘤控制概率模型,这些架构整合了多组学信息。

相似文献

3
Machine Learning to Build and Validate a Model for Radiation Pneumonitis Prediction in Patients with Non-Small Cell Lung Cancer.
Clin Cancer Res. 2019 Jul 15;25(14):4343-4350. doi: 10.1158/1078-0432.CCR-18-1084. Epub 2019 Apr 16.
5
Effect of normal lung definition on lung dosimetry and lung toxicity prediction in radiation therapy treatment planning.
Int J Radiat Oncol Biol Phys. 2013 Aug 1;86(5):956-63. doi: 10.1016/j.ijrobp.2013.05.003.
6
Multi-omics deep learning for radiation pneumonitis prediction in lung cancer patients underwent volumetric modulated arc therapy.
Comput Methods Programs Biomed. 2024 Sep;254:108295. doi: 10.1016/j.cmpb.2024.108295. Epub 2024 Jun 19.
9
Evaluating Which Dose-Function Metrics Are Most Critical for Functional-Guided Radiation Therapy.
Int J Radiat Oncol Biol Phys. 2017 Sep 1;99(1):202-209. doi: 10.1016/j.ijrobp.2017.03.051. Epub 2017 Apr 8.
10
Unraveling biophysical interactions of radiation pneumonitis in non-small-cell lung cancer via Bayesian network analysis.
Radiother Oncol. 2017 Apr;123(1):85-92. doi: 10.1016/j.radonc.2017.02.004. Epub 2017 Feb 22.

引用本文的文献

2
Deep learning-driven multi-omics analysis: enhancing cancer diagnostics and therapeutics.
Brief Bioinform. 2025 Jul 2;26(4). doi: 10.1093/bib/bbaf440.
3
Challenges and opportunities to integrate artificial intelligence in radiation oncology: a narrative review.
Ewha Med J. 2024 Oct;47(4):e49. doi: 10.12771/emj.2024.e49. Epub 2024 Oct 31.
7
Deep learning combining imaging, dose and clinical data for predicting bowel toxicity after pelvic radiotherapy.
Phys Imaging Radiat Oncol. 2025 Feb 1;33:100710. doi: 10.1016/j.phro.2025.100710. eCollection 2025 Jan.
8
Artificial intelligence in lung cancer: current applications, future perspectives, and challenges.
Front Oncol. 2024 Dec 23;14:1486310. doi: 10.3389/fonc.2024.1486310. eCollection 2024.
9
Machine learning in image-based outcome prediction after radiotherapy: A review.
J Appl Clin Med Phys. 2025 Jan;26(1):e14559. doi: 10.1002/acm2.14559. Epub 2024 Nov 18.

本文引用的文献

1
Adversarial Time-to-Event Modeling.
Proc Mach Learn Res. 2018 Jul;80:735-744.
2
Balancing accuracy and interpretability of machine learning approaches for radiation treatment outcomes modeling.
BJR Open. 2019 Jul 4;1(1):20190021. doi: 10.1259/bjro.20190021. eCollection 2019.
3
Machine Learning-Based Models for Prediction of Toxicity Outcomes in Radiotherapy.
Front Oncol. 2020 Jun 5;10:790. doi: 10.3389/fonc.2020.00790. eCollection 2020.
4
Introduction to machine and deep learning for medical physicists.
Med Phys. 2020 Jun;47(5):e127-e147. doi: 10.1002/mp.14140.
5
Machine learning for radiation outcome modeling and prediction.
Med Phys. 2020 Jun;47(5):e178-e184. doi: 10.1002/mp.13570.
6
7
Deep Learning: A Review for the Radiation Oncologist.
Front Oncol. 2019 Oct 1;9:977. doi: 10.3389/fonc.2019.00977. eCollection 2019.
9
Artificial Neural Network with Composite Architectures for Prediction of Local Control in Radiotherapy.
IEEE Trans Radiat Plasma Med Sci. 2019 Mar;3(2):242-249. doi: 10.1109/TRPMS.2018.2884134. Epub 2018 Nov 29.
10
A scalable discrete-time survival model for neural networks.
PeerJ. 2019 Jan 25;7:e6257. doi: 10.7717/peerj.6257. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验