Suppr超能文献

在局部乳腺治疗的逆向计划优化中,使用多实例几何近似(MIGA)评估多种呼吸状态。

Evaluation of multiple breathing states using a multiple instance geometry approximation (MIGA) in inverse-planned optimization for locoregional breast treatment.

作者信息

Lin Alexander, Moran Jean M, Marsh Robin B, Balter James M, Fraass Benedick A, McShan Daniel L, Kessler Marc L, Pierce Lori J

机构信息

Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109-0010, USA.

出版信息

Int J Radiat Oncol Biol Phys. 2008 Oct 1;72(2):610-6. doi: 10.1016/j.ijrobp.2008.06.1488.

Abstract

PURPOSE

Although previous work demonstrated superior dose distributions for left-sided breast cancer patients planned for intensity-modulated radiation therapy (IMRT) at deep inspiration breath hold compared with conventional techniques with free-breathing, such techniques are not always feasible to limit the impact of respiration on treatment delivery. This study assessed whether optimization based on multiple instance geometry approximation (MIGA) could derive an IMRT plan that is less sensitive to known respiratory motions.

METHODS AND MATERIALS

CT scans were acquired with an active breathing control device at multiple breath-hold states. Three inverse optimized plans were generated for eight left-sided breast cancer patients: one static IMRT plan optimized at end exhale, two (MIGA) plans based on a MIGA representation of normal breathing, and a MIGA representation of deep breathing, respectively. Breast and nodal targets were prescribed 52.2 Gy, and a simultaneous tumor bed boost was prescribed 60 Gy.

RESULTS

With normal breathing, doses to the targets, heart, and left anterior descending (LAD) artery were equivalent whether optimizing with MIGA or on a static data set. When simulating motion due to deep breathing, optimization with MIGA appears to yield superior tumor-bed coverage, decreased LAD mean dose, and maximum heart and LAD dose compared with optimization on a static representation.

CONCLUSIONS

For left-sided breast-cancer patients, inverse-based optimization accounting for motion due to normal breathing may be similar to optimization on a static data set. However, some patients may benefit from accounting for deep breathing with MIGA with improvements in tumor-bed coverage and dose to critical structures.

摘要

目的

尽管先前的研究表明,对于计划接受调强放射治疗(IMRT)的左侧乳腺癌患者,在深吸气屏气时的剂量分布优于自由呼吸的传统技术,但此类技术并不总是可行的,难以限制呼吸对治疗实施的影响。本研究评估了基于多实例几何近似(MIGA)的优化是否能够得出对已知呼吸运动不太敏感的IMRT计划。

方法和材料

使用主动呼吸控制装置在多个屏气状态下采集CT扫描图像。为8名左侧乳腺癌患者生成了三个逆向优化计划:一个在呼气末优化的静态IMRT计划、两个基于正常呼吸的MIGA表示的计划以及一个基于深呼吸的MIGA表示的计划。乳腺和淋巴结靶区的处方剂量为52.2 Gy,同时对瘤床追加处方剂量60 Gy。

结果

在正常呼吸情况下,无论使用MIGA还是在静态数据集上进行优化,靶区、心脏和左前降支(LAD)动脉的剂量都是相当的。当模拟深呼吸引起的运动时,与基于静态表示的优化相比,使用MIGA进行优化似乎能产生更好的瘤床覆盖,降低LAD平均剂量以及心脏和LAD的最大剂量。

结论

对于左侧乳腺癌患者,考虑正常呼吸引起的运动的基于逆向的优化可能与在静态数据集上的优化相似。然而,一些患者可能会受益于使用MIGA考虑深呼吸,从而改善瘤床覆盖和关键结构的剂量。

相似文献

本文引用的文献

8
ROC curves and evaluation of radiation-induced pulmonary toxicity in breast cancer.乳腺癌中辐射诱导的肺部毒性的ROC曲线及评估
Int J Radiat Oncol Biol Phys. 2006 Mar 1;64(3):765-70. doi: 10.1016/j.ijrobp.2005.08.011. Epub 2005 Oct 26.
9
Intensity-modulated radiotherapy technique for three-field breast treatment.用于乳腺三野治疗的调强放射治疗技术。
Int J Radiat Oncol Biol Phys. 2005 Jul 15;62(4):1217-23. doi: 10.1016/j.ijrobp.2005.03.040.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验