Suppr超能文献

与2型糖尿病相关的人血清蛋白质组的局部统计定量分析

Localized-statistical quantification of human serum proteome associated with type 2 diabetes.

作者信息

Li Rong-Xia, Chen Hai-Bing, Tu Kang, Zhao Shi-Lin, Zhou Hu, Li Su-Jun, Dai Jie, Li Qing-Run, Nie Song, Li Yi-Xue, Jia Wei-Ping, Zeng Rong, Wu Jia-Rui

机构信息

Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.

出版信息

PLoS One. 2008 Sep 16;3(9):e3224. doi: 10.1371/journal.pone.0003224.

Abstract

BACKGROUND

Recent advances in proteomics have shed light to discover serum proteins or peptides as biomarkers for tracking the progression of diabetes as well as understanding molecular mechanisms of the disease.

RESULTS

In this work, human serum of non-diabetic and diabetic cohorts was analyzed by proteomic approach. To analyze total 1377 high-confident serum-proteins, we developed a computing strategy called localized statistics of protein abundance distribution (LSPAD) to calculate a significant bias of a particular protein-abundance between these two cohorts. As a result, 68 proteins were found significantly over-represented in the diabetic serum (p<0.01). In addition, a pathway-associated analysis was developed to obtain the overall pathway bias associated with type 2 diabetes, from which the significant over-representation of complement system associated with type 2 diabetes was uncovered. Moreover, an up-stream activator of complement pathway, ficolin-3, was observed over-represented in the serum of type 2 diabetic patients, which was further validated with statistic significance (p = 0.012) with more clinical samples.

CONCLUSIONS

The developed LSPAD approach is well fit for analyzing proteomic data derived from biological complex systems such as plasma proteome. With LSPAD, we disclosed the comprehensive distribution of the proteins associated with diabetes in different abundance levels and the involvement of ficolin-related complement activation in diabetes.

摘要

背景

蛋白质组学的最新进展为发现血清蛋白或肽作为追踪糖尿病进展以及理解该疾病分子机制的生物标志物提供了线索。

结果

在这项工作中,采用蛋白质组学方法分析了非糖尿病和糖尿病队列的人血清。为了分析总共1377种高可信度血清蛋白,我们开发了一种称为蛋白质丰度分布局部统计(LSPAD)的计算策略,以计算这两个队列之间特定蛋白质丰度的显著偏差。结果,发现68种蛋白质在糖尿病血清中显著富集(p<0.01)。此外,还开展了一项通路相关分析,以获得与2型糖尿病相关的总体通路偏差,从中发现了与2型糖尿病相关的补体系统显著富集。此外,观察到补体通路的上游激活剂纤维胶凝蛋白-3在2型糖尿病患者血清中富集,在更多临床样本中进一步验证具有统计学意义(p = 0.012)。

结论

所开发的LSPAD方法非常适合分析源自生物复杂系统(如血浆蛋白质组)的蛋白质组学数据。通过LSPAD,我们揭示了与糖尿病相关的蛋白质在不同丰度水平的全面分布以及纤维胶凝蛋白相关补体激活在糖尿病中的参与情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a15/2529402/af5f2897caaf/pone.0003224.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验