Suppr超能文献

一种用于纵向计数数据的新的序列相关伽马脆弱性过程。

A new serially correlated gamma-frailty process for longitudinal count data.

作者信息

Fiocco M, Putter H, Van Houwelingen J C

机构信息

Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Postzone S-05-P, PO Box 9600, 2300 RC Leiden, The Netherlands.

出版信息

Biostatistics. 2009 Apr;10(2):245-57. doi: 10.1093/biostatistics/kxn031. Epub 2008 Sep 15.

Abstract

We describe a new multivariate gamma distribution and discuss its implication in a Poisson-correlated gamma-frailty model. This model is introduced to account for between-subjects correlation occurring in longitudinal count data. For likelihood-based inference involving distributions in which high-dimensional dependencies are present, it may be useful to approximate likelihoods based on the univariate or bivariate marginal distributions. The merit of composite likelihood is to reduce the computational complexity of the full likelihood. A 2-stage composite-likelihood procedure is developed for estimating the model parameters. The suggested method is applied to a meta-analysis study for survival curves.

摘要

我们描述了一种新的多元伽马分布,并讨论了其在泊松相关伽马脆弱模型中的意义。引入该模型是为了考虑纵向计数数据中出现的个体间相关性。对于涉及存在高维依赖性分布的基于似然的推断,基于单变量或双变量边际分布来近似似然可能是有用的。复合似然的优点是降低了全似然的计算复杂性。开发了一种两阶段复合似然程序来估计模型参数。所提出的方法应用于生存曲线的荟萃分析研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验