Suppr超能文献

用生物分子对聚乙二醇二丙烯酸酯水凝胶进行微图案化处理以调节和引导内皮细胞形态发生。

Micropatterning of poly(ethylene glycol) diacrylate hydrogels with biomolecules to regulate and guide endothelial morphogenesis.

作者信息

Moon James J, Hahn Mariah S, Kim Iris, Nsiah Barbara A, West Jennifer L

机构信息

Department of Bioengineering, Rice University, Houston, Texas 77251-1892, USA.

出版信息

Tissue Eng Part A. 2009 Mar;15(3):579-85. doi: 10.1089/ten.tea.2008.0196.

Abstract

Angiogenesis, which is morphogenesis undertaken by endothelial cells (ECs) during new blood vessel formation, has been traditionally studied on natural extracellular matrix proteins. In this work, we aimed to regulate and guide angiogenesis on synthetic, bioactive poly(ethylene glycol)-diacrylate (PEGDA) hydrogels. PEGDA hydrogel is intrinsically cell nonadhesive and highly resistant to protein adsorption, allowing a high degree of control over presentation of ligands for cell adhesion and signaling. Since these materials are photopolymerizable, a variety of photolithographic technologies may be applied to spatially control presentation of bioactive ligands. To manipulate EC adhesion, migration, and tubulogenesis, the surface of PEGDA hydrogels was micropatterned with a cell adhesive ligand, Arg-Gly-Asp-Ser (RGDS), in desired concentrations and geometries. ECs cultured on these RGDS patterns reorganized their cell bodies into cord-like structures on 50-microm-wide stripes, but not on wider stripes, suggesting that EC morphogenesis can be regulated by geometrical cues. The cords formed by ECs were reminiscent of capillaries with cells participating in the self-assembly and reorganization into multicellular structures. Further, endothelial cord formation was stimulated on intermediate concentration of RGDS at 20 microg/cm(2), whereas it was inhibited at higher concentrations. This work has shown that angiogenic responses can be tightly regulated and guided by micropatterning of bioactive ligands and also demonstrated great potentials of micropatterned PEGDA hydrogels for various applications in tissue engineering, where vascularization prior to implantation is critical.

摘要

血管生成是内皮细胞(ECs)在新血管形成过程中进行的形态发生,传统上是在天然细胞外基质蛋白上进行研究的。在这项工作中,我们旨在调控和引导合成的生物活性聚乙二醇二丙烯酸酯(PEGDA)水凝胶上的血管生成。PEGDA水凝胶本质上是非细胞黏附性的,并且对蛋白质吸附具有高度抗性,这使得能够高度控制细胞黏附配体和信号的呈现。由于这些材料是可光聚合的,因此可以应用各种光刻技术在空间上控制生物活性配体的呈现。为了操纵内皮细胞的黏附、迁移和管状形成,PEGDA水凝胶的表面用细胞黏附配体精氨酸-甘氨酸-天冬氨酸-丝氨酸(RGDS)以所需的浓度和几何形状进行了微图案化。在这些RGDS图案上培养的内皮细胞在50微米宽的条纹上将其细胞体重新组织成索状结构,但在更宽的条纹上则不会,这表明内皮细胞的形态发生可以通过几何线索来调控。内皮细胞形成的索状结构让人联想到毛细血管中的细胞参与自组装并重新组织成多细胞结构。此外,在20微克/平方厘米的中等浓度RGDS上刺激了内皮索的形成,而在更高浓度下则受到抑制。这项工作表明,血管生成反应可以通过生物活性配体的微图案化进行严格调控和引导,并且还展示了微图案化PEGDA水凝胶在组织工程各种应用中的巨大潜力,在组织工程中植入前的血管化至关重要。

相似文献

3
Covalently immobilized platelet-derived growth factor-BB promotes angiogenesis in biomimetic poly(ethylene glycol) hydrogels.
Acta Biomater. 2011 Jan;7(1):133-43. doi: 10.1016/j.actbio.2010.08.018. Epub 2010 Aug 27.
4
Biomimetic hydrogels with immobilized ephrinA1 for therapeutic angiogenesis.
Biomacromolecules. 2011 Jul 11;12(7):2715-22. doi: 10.1021/bm200492h. Epub 2011 Jun 15.
7
Peptide-grafted poly(ethylene glycol) hydrogels support dynamic adhesion of endothelial progenitor cells.
Acta Biomater. 2013 Sep;9(9):8279-89. doi: 10.1016/j.actbio.2013.05.023. Epub 2013 Jun 13.
8
Three-dimensional micropatterning of bioactive hydrogels via two-photon laser scanning photolithography for guided 3D cell migration.
Biomaterials. 2008 Jul;29(20):2962-8. doi: 10.1016/j.biomaterials.2008.04.004. Epub 2008 Apr 22.
9
Micropatterning of poly(ethylene glycol) diacrylate hydrogels.
Methods Cell Biol. 2014;121:105-19. doi: 10.1016/B978-0-12-800281-0.00008-7.

引用本文的文献

1
Engineered microvascular basement membrane mimetic for real-time neutrophil tracking in the microvascular wall.
Bioeng Transl Med. 2025 Mar 12;10(4):e70008. doi: 10.1002/btm2.70008. eCollection 2025 Jul.
2
Liquefied capsules containing nanogrooved microdiscs and umbilical cord-derived cells for bone tissue engineering.
Open Res Eur. 2024 Sep 9;4:94. doi: 10.12688/openreseurope.17000.2. eCollection 2024.
3
Epithelial cell-cell interactions in an overcrowded environment: jamming or live cell extrusion.
J Biol Eng. 2024 Sep 5;18(1):47. doi: 10.1186/s13036-024-00442-3.
4
Capturing physiological hemodynamic flow and mechanosensitive cell signaling in vessel-on-a-chip platforms.
Front Physiol. 2024 Jul 29;15:1425618. doi: 10.3389/fphys.2024.1425618. eCollection 2024.
8
Functionalised biomaterials as synthetic extracellular matrices to promote vascularisation and healing of diabetic wounds.
Cell Tissue Res. 2024 Feb;395(2):133-145. doi: 10.1007/s00441-023-03849-4. Epub 2023 Dec 5.
9
Molecular design of an ultra-strong tissue adhesive hydrogel with tunable multifunctionality.
Bioact Mater. 2023 Jul 17;29:214-229. doi: 10.1016/j.bioactmat.2023.06.007. eCollection 2023 Nov.
10
Mechanomorphological Guidance of Colloidal Gel Regulates Cell Morphogenesis.
Macromol Biosci. 2023 Sep;23(9):e2300122. doi: 10.1002/mabi.202300122. Epub 2023 May 18.

本文引用的文献

1
In vitro matrigel angiogenesis assays.
Methods Mol Med. 2001;46:205-9. doi: 10.1385/1-59259-143-4:205.
2
Three-dimensional micropatterning of bioactive hydrogels via two-photon laser scanning photolithography for guided 3D cell migration.
Biomaterials. 2008 Jul;29(20):2962-8. doi: 10.1016/j.biomaterials.2008.04.004. Epub 2008 Apr 22.
3
Photolithographic patterning of polyethylene glycol hydrogels.
Biomaterials. 2006 Apr;27(12):2519-24. doi: 10.1016/j.biomaterials.2005.11.045. Epub 2005 Dec 20.
5
Poly(ethylene glycol) hydrogel system supports preadipocyte viability, adhesion, and proliferation.
Tissue Eng. 2005 Sep-Oct;11(9-10):1498-505. doi: 10.1089/ten.2005.11.1498.
6
Biocompatible micropatterning of two different cell types.
J Am Chem Soc. 2005 Feb 16;127(6):1598-9. doi: 10.1021/ja044382a.
7
Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration.
Biomaterials. 2005 Jun;26(16):3227-34. doi: 10.1016/j.biomaterials.2004.09.021.
8
The ins and outs of fibronectin matrix assembly.
J Cell Sci. 2003 Aug 15;116(Pt 16):3269-76. doi: 10.1242/jcs.00670.
9
Molecular regulation of vessel maturation.
Nat Med. 2003 Jun;9(6):685-93. doi: 10.1038/nm0603-685.
10
Lumen formation: in vivo versus in vitro observations.
Microcirculation. 2003 Jan;10(1):45-61. doi: 10.1038/sj.mn.7800174.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验