Suppr超能文献

温度对嗜热恒化器培养条件下葡萄糖降解产甲烷菌群微生物群落的影响

Effect of temperature on microbial community of a glucose-degrading methanogenic consortium under hyperthermophilic chemostat cultivation.

作者信息

Tang Yue-Qin, Matsui Toru, Morimura Shigeru, Wu Xiao-Lei, Kida Kenji

机构信息

Graduate School of Science and Technology, Kumamoto University, Kumamoto-City, Kumamoto, Japan.

出版信息

J Biosci Bioeng. 2008 Aug;106(2):180-7. doi: 10.1263/jbb.106.180.

Abstract

We continuously fed an anaerobic chemostat with synthetic wastewater containing glucose as the sole source of carbon and energy to study the effects of temperature on the microbial community under hyperthermophilic (65-80 degrees C) conditions. Methane was produced normally up to 77.5 degrees C at a dilution rate of 0.025 d(-1). However, the concentration of microorganisms and the rate of gas production decreased with increasing operation temperature. The microbial community in the chemostat at various temperatures was analyzed based on the 16S rRNA gene using molecular biological techniques including clone library analysis and denaturing gradient gel electrophoresis (DGGE). Aceticlastic methanogens related to Methanosarcina thermophila were detected at 65 degrees C and hydrogenotrophilic methanogens related to Methanothermobacter thermautotrophicus were the dominant methanogens between 70 degrees C to 77.5 degrees C. Bacteria related to Clostridium stercorarium and Thermoanaerobacter subterraneus comprised the dominant glucose-fermenting bacteria at temperatures of 65 degrees C and above, respectively. Bacteria related to Thermacetogenium phaeum and to Tepidiphilus margaritifer and Petrobacter succinatimandens were the dominant acetate-oxidizing bacteria at 70 degrees C and at 75-77.5 degrees C, respectively. The results suggested that, at temperatures of 70 degrees C and above, methane production via the aceticlastic pathway was negligible and indirect methanogenesis from acetate was dominant. Since acetate oxidation is a rate limiting step and a higher temperature favors the hydrolysis and acid formation, a two stage fermentation process, acidogenic and methanogenic fermentation stages operated under different temperatures, should be more suitable for the thermophilic anaerobic treatment at temperatures above 65 degrees C.

摘要

我们持续向厌氧恒化器中投喂以葡萄糖作为唯一碳源和能源的合成废水,以研究超嗜热(65 - 80摄氏度)条件下温度对微生物群落的影响。在稀释率为0.025 d(-1)时,直至77.5摄氏度都能正常产生甲烷。然而,随着操作温度升高,微生物浓度和产气速率降低。利用包括克隆文库分析和变性梯度凝胶电泳(DGGE)在内的分子生物学技术,基于16S rRNA基因对不同温度下恒化器中的微生物群落进行了分析。在65摄氏度时检测到与嗜热甲烷八叠球菌相关的乙酸营养型产甲烷菌,在70摄氏度至77.5摄氏度之间,与嗜热自养甲烷杆菌相关的氢营养型产甲烷菌是主要的产甲烷菌。与粪便梭菌和地下嗜热厌氧杆菌相关的细菌分别在65摄氏度及以上温度时构成主要的葡萄糖发酵细菌。与暗热乙酸菌、珠母嗜温菌和琥珀酸产石油杆菌相关的细菌分别在70摄氏度和75 - 7摄氏度时是主要的乙酸氧化细菌。结果表明,在70摄氏度及以上温度时,通过乙酸营养型途径产生甲烷可忽略不计,乙酸间接产甲烷占主导。由于乙酸氧化是限速步骤,且较高温度有利于水解和产酸,因此在不同温度下运行的产酸发酵和产甲烷发酵两阶段发酵过程应更适合65摄氏度以上的嗜热厌氧处理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验