Hellwig Patrick, Kautzner Daniel, Heyer Robert, Dittrich Anna, Wibberg Daniel, Busche Tobias, Winkler Anika, Reichl Udo, Benndorf Dirk
Otto-von-Guericke University Magdeburg, Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Saxony-Anhalt, Germany.
Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Saxony-Anhalt, Germany.
ISME Commun. 2024 Dec 4;4(1):ycae153. doi: 10.1093/ismeco/ycae153. eCollection 2024 Jan.
A comprehensive understanding of microbial community dynamics is fundamental to the advancement of environmental microbiology, human health, and biotechnology. Metaproteomics, defined as the analysis of all proteins present within a microbial community, provides insights into these complex systems. Microbial adaptation and activity depend to an important extent on newly synthesized proteins (nP), however, the distinction between nP and bulk proteins is challenging. The application of BONCAT with click chemistry has demonstrated efficacy in the enrichment of nP in pure cultures for proteomics. However, the transfer of this technique to microbial communities and metaproteomics has proven challenging and thus it has not not been used on microbial communities before. To address this, a new workflow with efficient and specific nP enrichment was developed using a laboratory-scale mixture of labelled and unlabeled yeast. This workflow was then successfully applied to an anaerobic microbial community with initially low bioorthogonal non-canonical amino acid tagging efficiency. A substrate shift from glucose to ethanol selectively enriched nP with minimal background. The identification of bifunctional alcohol dehydrogenase and a syntrophic interaction between an ethanol-utilizing bacterium and two methanogens (hydrogenotrophic and acetoclastic) demonstrates the potential of metaproteomics targeting nP to trace microbial activity in complex microbial communities.
全面了解微生物群落动态是环境微生物学、人类健康和生物技术发展的基础。元蛋白质组学被定义为对微生物群落中所有蛋白质的分析,它为深入了解这些复杂系统提供了线索。微生物的适应和活动在很大程度上取决于新合成的蛋白质(nP),然而,区分nP和总体蛋白质具有挑战性。将BONCAT与点击化学相结合的方法已证明在富集纯培养物中的nP用于蛋白质组学方面具有有效性。然而,将该技术应用于微生物群落和元蛋白质组学已被证明具有挑战性,因此此前尚未在微生物群落中使用过。为了解决这个问题,使用标记和未标记酵母的实验室规模混合物开发了一种具有高效且特异性nP富集的新工作流程。然后,该工作流程成功应用于最初生物正交非天然氨基酸标记效率较低的厌氧微生物群落。从葡萄糖到乙醇的底物转变以最小的背景选择性地富集了nP。双功能乙醇脱氢酶的鉴定以及利用乙醇的细菌与两种产甲烷菌(氢营养型和乙酸裂解型)之间的互营相互作用证明了以nP为目标的元蛋白质组学在追踪复杂微生物群落中微生物活动方面的潜力。