Suppr超能文献

Oxidative stress and chronological aging in glycogen-phosphorylase-deleted yeast.

作者信息

Favre Cristián, Aguilar Pablo S, Carrillo María C

机构信息

Institute of Experimental Physiology, CONICET, School of Biochemical Sciences, University of Rosario, Rosario, Argentina.

出版信息

Free Radic Biol Med. 2008 Nov 15;45(10):1446-56. doi: 10.1016/j.freeradbiomed.2008.08.021. Epub 2008 Sep 6.

Abstract

Chronological aging in yeast resembles aging in mammalian, postmitotic tissues. Such chronological aging begins with entrance into the stationary phase after the nutrients are exhausted. Many changes in metabolism take place at this moment, and survival in this phase strongly depends on oxidative-stress resistance. In this study, hypo- and hyperglycogenic phenotypes of Saccharomyces cerevisiae strains with deletions of carbohydrate-metabolism enzymes were selected, and a comparison of their chronological longevities was made. Stress sensitivity, ROS, and apoptosis markers during aging were analyzed in the emerged candidates. Among the strains that accumulated greater amounts of glycogen, the deletion of glycogen phosphorylase, gph1delta, was unique in showing a shortened life span, stress intolerance, and higher levels of ROS during its survival. The transcription of superoxide dismutase genes during survival was three- to fourfold lower in gph1delta. Extra copies of SOD1/2 counteracted the stress sensitivity and the accelerated aging of gph1delta. In conclusion, the lack of gph1 produced a rapidly aging strain, which could be attributed, at least in part, to the weakened stress resistance associated with the decreased expression of both SODs. Gph1p seems to be a candidate in a scenario that could link early metabolic changes with other targets of the stress response during stationary-phase survival.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验