Suppr超能文献

果糖-1,6-二磷酸酶介导酿酒酵母对DNA损伤和衰老的细胞反应。

Fructose-1,6-bisphosphatase mediates cellular responses to DNA damage and aging in Saccharomyces cerevisiae.

作者信息

Kitanovic Ana, Wölfl Stefan

机构信息

Institut für Pharmazie und Molekulare Biotechnologie, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany.

出版信息

Mutat Res. 2006 Feb 22;594(1-2):135-47. doi: 10.1016/j.mrfmmm.2005.08.005. Epub 2005 Sep 30.

Abstract

Response to DNA damage, lack of nutrients and other stress conditions is an essential property of living systems. The coordinate response includes DNA damage repair, activation of alternate biochemical pathways, adjustment of cellular proliferation and cell cycle progression as well as drastic measures like cellular suicide which prevents proliferation of severely damaged cells. Investigating the transcriptional response of Saccharomyces cerevisiae to low doses of the alkylating agent methylmethane sulfonate (MMS) we observed induction of genes involved in glucose metabolism. RT-PCR analysis showed that the expression of the key enzyme in gluconeogenesis fructose-1,6-bisphosphatase (FBP1) was clearly up-regulated by MMS in glucose-rich medium. Interestingly, deletion of FBP1 led to reduced sensitivity to MMS, but not to other DNA-damaging agents, such as 4-NQO or phleomycin. Reintroduction of FBP1 in the knockout restored the wild-type phenotype while overexpression increased MMS sensitivity of wild-type, shortened life span and increased induction of RNR2 after treatment with MMS. Deletion of FBP1 reduced production of reactive oxygen species (ROS) in response to MMS treatment and in untreated aged cells, and increased the amount of cells able to propagate and to form colonies, but had no influence on the genotoxic effect of MMS. Our results indicate that FBP1 influences the connection between DNA damage, aging and oxidative stress through either direct signalling or an intricate adaptation in energy metabolism.

摘要

对DNA损伤、营养物质缺乏及其他应激条件作出反应是生命系统的一项基本特性。这种协同反应包括DNA损伤修复、激活替代生化途径、调节细胞增殖和细胞周期进程,以及采取如细胞自杀等极端措施,以防止严重受损细胞的增殖。在研究酿酒酵母对低剂量烷基化剂甲磺酸甲酯(MMS)的转录反应时,我们观察到参与葡萄糖代谢的基因被诱导。RT-PCR分析表明,在富含葡萄糖的培养基中,糖异生关键酶果糖-1,6-二磷酸酶(FBP1)的表达明显被MMS上调。有趣的是,FBP1的缺失导致对MMS的敏感性降低,但对其他DNA损伤剂,如4-硝基喹啉氧化物或博来霉素不敏感。在敲除菌株中重新引入FBP1可恢复野生型表型,而过度表达则增加了野生型对MMS的敏感性,缩短了寿命,并增加了MMS处理后RNR2的诱导。FBP1的缺失减少了对MMS处理及未处理的衰老细胞中活性氧(ROS)的产生,并增加了能够增殖和形成菌落的细胞数量,但对MMS的遗传毒性作用没有影响。我们的结果表明,FBP1通过直接信号传导或能量代谢中的复杂适应性变化影响DNA损伤、衰老和氧化应激之间的联系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验