Suppr超能文献

非人类灵长类动物与人类灵长类动物之间纹状体体积的差异。

Striatal volume differences between non-human and human primates.

作者信息

Yin Dali, Valles Francisco E, Fiandaca Massimo S, Forsayeth John, Larson Paul, Starr Phillip, Bankiewicz Krystof S

机构信息

Department of Neurosurgery, University of California San Francisco, 1855 Folsom Street, San Francisco, CA 94103, United States.

出版信息

J Neurosci Methods. 2009 Jan 30;176(2):200-5. doi: 10.1016/j.jneumeth.2008.08.027. Epub 2008 Sep 2.

Abstract

Convection-enhanced delivery (CED) has recently entered the clinic and represents a promising new delivery option for targeted gene therapy in Parkinson's disease (PD). The prime stereotactic target for the majority of recent gene therapy clinical trials has been the human putamen. The stereotactic delivery of therapeutic agents into putamen (or other subcortical structures) via CED remains problematic due to the difficulty in knowing what volume of therapeutic agent to deliver. Preclinical studies in non-human primates (NHP) offer a way to model treatment strategies prior to clinical trials. Understanding more accurately the volumetric differences in striatum, especially putamen, between NHP and humans is essential in predicting convective volume parameters in human clinical trials. In this study, magnetic resonance images (MRI) were obtained for volumetric measurements of striatum (putamen and caudate nucleus) and whole brain from 11 PD patients, 13 aged healthy human subjects, as well as 8 parkinsonian and 30 normal NHP. The human brain is 13-18 times larger than the monkey brain. However, this ratio is significantly smaller for striatum (5.7-6.5), caudate nucleus (4.6-6.6) and putamen (4.4-6.6). Size and species of the monkeys used for this comparative study are responsible for differences in ratios for each structure between monkeys and humans. This volumetric ratio may have important implications in the design of clinical therapies for PD and Huntington's disease and should be considered when local therapies such as gene transfer, local protein administration or cellular replacement are translated based on NHP research.

摘要

对流增强递送(CED)最近已进入临床,是帕金森病(PD)靶向基因治疗中一种有前景的新递送选择。近期大多数基因治疗临床试验的主要立体定向靶点是人类壳核。由于难以确定要递送的治疗剂体积,通过CED将治疗剂立体定向递送至壳核(或其他皮质下结构)仍然存在问题。非人灵长类动物(NHP)的临床前研究为在临床试验之前模拟治疗策略提供了一种方法。更准确地了解NHP与人类之间纹状体,尤其是壳核的体积差异,对于预测人类临床试验中的对流体积参数至关重要。在本研究中,获取了11例PD患者、13例老年健康人类受试者以及8只帕金森病NHP和30只正常NHP的磁共振图像(MRI),用于测量纹状体(壳核和尾状核)和全脑的体积。人类大脑比猴脑大13 - 18倍。然而,纹状体(5.7 - 6.5)、尾状核(4.6 - 6.6)和壳核(4.4 - 6.6)的这一比例要小得多。用于该比较研究的猴子的大小和种类导致了猴子与人类之间各结构比例的差异。这种体积比例可能对PD和亨廷顿病的临床治疗设计具有重要意义,并且在基于NHP研究进行基因转移、局部蛋白质给药或细胞替代等局部治疗转化时应予以考虑。

相似文献

1
Striatal volume differences between non-human and human primates.
J Neurosci Methods. 2009 Jan 30;176(2):200-5. doi: 10.1016/j.jneumeth.2008.08.027. Epub 2008 Sep 2.
4
Brain α7 nicotinic acetylcholine receptors in MPTP-lesioned monkeys and parkinsonian patients.
Biochem Pharmacol. 2016 Jun 1;109:62-69. doi: 10.1016/j.bcp.2016.03.023. Epub 2016 Mar 30.
5
The fate of striatal dopaminergic neurons in Parkinson's disease and Huntington's chorea.
Brain. 2007 Jan;130(Pt 1):222-32. doi: 10.1093/brain/awl332. Epub 2006 Dec 2.
6
Optimal region of the putamen for image-guided convection-enhanced delivery of therapeutics in human and non-human primates.
Neuroimage. 2011 Jan;54 Suppl 1:S196-203. doi: 10.1016/j.neuroimage.2009.08.069. Epub 2009 Sep 15.
9
Functional parcellation of human and macaque striatum reveals human-specific connectivity in the dorsal caudate.
Neuroimage. 2021 Jul 15;235:118006. doi: 10.1016/j.neuroimage.2021.118006. Epub 2021 Apr 2.
10
Striatal shape in Parkinson's disease.
Neurobiol Aging. 2013 Nov;34(11):2510-6. doi: 10.1016/j.neurobiolaging.2013.05.017. Epub 2013 Jun 29.

引用本文的文献

4
Preclinical evaluation of transaxial intraputaminal trajectory for enhanced distribution of grafted cells in Parkinson's disease.
J Neurosurg. 2024 Jul 26;141(6):1554-1566. doi: 10.3171/2024.4.JNS24367. Print 2024 Dec 1.
6
From imaging to precision: low cost and accurate determination of stereotactic coordinates for brain surgery using MRI.
Front Neurosci. 2024 Feb 1;18:1324669. doi: 10.3389/fnins.2024.1324669. eCollection 2024.
7
Treatment of Parkinson's disease with biologics that penetrate the blood-brain barrier via receptor-mediated transport.
Front Aging Neurosci. 2023 Nov 13;15:1276376. doi: 10.3389/fnagi.2023.1276376. eCollection 2023.
8
Evolutionary and genomic perspectives of brain aging and neurodegenerative diseases.
Prog Brain Res. 2023;275:165-215. doi: 10.1016/bs.pbr.2022.10.004. Epub 2023 Feb 3.
9
The engineered AAV2-HBKO promotes non-invasive gene delivery to large brain regions beyond ultrasound targeted sites.
Mol Ther Methods Clin Dev. 2022 Sep 26;27:167-184. doi: 10.1016/j.omtm.2022.09.011. eCollection 2022 Dec 8.
10
Volumetric and connectivity assessment of the caudate nucleus in California sea lions and coyotes.
Anim Cogn. 2022 Oct;25(5):1231-1240. doi: 10.1007/s10071-022-01685-7. Epub 2022 Sep 17.

本文引用的文献

1
Results from a phase I safety trial of hAADC gene therapy for Parkinson disease.
Neurology. 2008 May 20;70(21):1980-3. doi: 10.1212/01.wnl.0000312381.29287.ff. Epub 2008 Apr 9.
4
Prediction of volumetric data errors in patients treated with gamma knife radiosurgery.
Stereotact Funct Neurosurg. 2007;85(4):184-91. doi: 10.1159/000101297. Epub 2007 Mar 27.
5
Real-time imaging and quantification of brain delivery of liposomes.
Pharm Res. 2006 Nov;23(11):2493-504. doi: 10.1007/s11095-006-9103-5. Epub 2006 Sep 14.
6
A dose-ranging study of AAV-hAADC therapy in Parkinsonian monkeys.
Mol Ther. 2006 Oct;14(4):571-7. doi: 10.1016/j.ymthe.2006.04.008. Epub 2006 Jun 16.
10
Movement disorders and Creutzfeldt-Jakob disease: a review.
Parkinsonism Relat Disord. 2006 Mar;12(2):65-71. doi: 10.1016/j.parkreldis.2005.10.004. Epub 2005 Dec 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验