Azuara Cyril, Orland Henri, Bon Michael, Koehl Patrice, Delarue Marc
Unité de Dynamique Structurale des Macromolécules, URA 2185 du Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France.
Biophys J. 2008 Dec 15;95(12):5587-605. doi: 10.1529/biophysj.108.131649. Epub 2008 Sep 26.
We describe a new way to calculate the electrostatic properties of macromolecules that goes beyond the classical Poisson-Boltzmann treatment with only a small extra CPU cost. The solvent region is no longer modeled as a homogeneous dielectric media but rather as an assembly of self-orienting interacting dipoles of variable density. The method effectively unifies both the Poisson-centric view and the Langevin Dipole model. The model results in a variable dielectric constant epsilon(r) in the solvent region and also in a variable solvent density rho(r) that depends on the nature of the closest exposed solute atoms. The model was calibrated using small molecules and ions solvation data with only two adjustable parameters, namely the size and dipolar moment of the solvent. Hydrophobicity scales derived from the solvent density profiles agree very well with independently derived hydrophobicity scales, both at the atomic or residue level. Dimerization interfaces in homodimeric proteins or lipid-binding regions in membrane proteins clearly appear as poorly solvated patches on the solute accessible surface. Comparison of the thermally averaged solvent density of this model with the one derived from molecular dynamics simulations shows qualitative agreement on a coarse-grained level. Because this calculation is much more rapid than that from molecular dynamics, applications of a density-profile-based solvation energy to the identification of the true structure among a set of decoys become computationally feasible. Various possible improvements of the model are discussed, as well as extensions of the formalism to treat mixtures of dipolar solvents of different sizes.
我们描述了一种计算大分子静电性质的新方法,该方法超越了传统的泊松-玻尔兹曼处理方法,且仅需少量额外的CPU计算成本。溶剂区域不再被建模为均匀的介电介质,而是被视为具有可变密度的自取向相互作用偶极子的集合。该方法有效地统一了以泊松为中心的观点和朗之万偶极子模型。该模型在溶剂区域产生了可变的介电常数ε(r),以及取决于最接近的暴露溶质原子性质的可变溶剂密度ρ(r)。该模型仅使用两个可调参数(即溶剂的大小和偶极矩),通过小分子和离子溶剂化数据进行了校准。从溶剂密度分布导出的疏水性标度在原子或残基水平上与独立导出的疏水性标度非常吻合。同二聚体蛋白质中的二聚化界面或膜蛋白中的脂质结合区域在溶质可及表面上明显表现为溶剂化程度较差的区域。将该模型的热平均溶剂密度与分子动力学模拟得出的溶剂密度进行比较,结果表明在粗粒度水平上具有定性一致性。由于这种计算比分子动力学计算快得多,基于密度分布的溶剂化能在一组诱饵中识别真实结构的应用在计算上变得可行。文中讨论了该模型的各种可能改进,以及将形式主义扩展以处理不同大小偶极溶剂混合物的方法。