Suppr超能文献

体外培养于电纺聚氨酯支架上会降低心肌细胞的心房利钠肽表达。

Culture on electrospun polyurethane scaffolds decreases atrial natriuretic peptide expression by cardiomyocytes in vitro.

作者信息

Rockwood Danielle N, Akins Robert E, Parrag Ian C, Woodhouse Kimberly A, Rabolt John F

机构信息

Department of Materials Science and Engineering, University of Delaware, 201 Dupont Hall, Newark, DE 19711, USA.

出版信息

Biomaterials. 2008 Dec;29(36):4783-91. doi: 10.1016/j.biomaterials.2008.08.034. Epub 2008 Sep 26.

Abstract

The function of the mammalian heart depends on the functional alignment of cardiomyocytes, and controlling cell alignment is an important consideration in biomaterial design for cardiac tissue engineering and research. The physical cues that guide functional cell alignment in vitro and the impact of substrate-imposed alignment on cell phenotype, however, are only partially understood. In this report, primary cardiac ventricular cells were grown on electrospun, biodegradable polyurethane (ES-PU) with either aligned or unaligned microfibers. ES-PU scaffolds supported high-density cultures and cell subpopulations remained intact over two weeks in culture. ES-PU cultures contained electrically-coupled cardiomyocytes with connexin-43 localized to points of cell:cell contact. Multi-cellular organization correlated with microfiber orientation and aligned materials yielded highly oriented cardiomyocyte groupings. Atrial natriuretic peptide, a molecular marker that shows decreasing expression during ventricular cell maturation, was significantly lower in cultures grown on ES-PU scaffolds than in those grown on tissue culture polystyrene. Cells grown on aligned ES-PU had significantly lower steady state levels of ANP and constitutively released less ANP over time indicating that scaffold-imposed cell organization resulted in a shift in cell phenotype to a more mature state. We conclude that the physical organization of microfibers in ES-PU scaffolds impacts both multi-cellular architecture and cardiac cell phenotype in vitro.

摘要

哺乳动物心脏的功能取决于心肌细胞的功能排列,而控制细胞排列是心脏组织工程和研究的生物材料设计中的一个重要考量因素。然而,在体外引导功能性细胞排列的物理线索以及基质施加的排列对细胞表型的影响,目前仅得到部分理解。在本报告中,原代心室肌细胞生长在具有排列或未排列微纤维的电纺可生物降解聚氨酯(ES-PU)上。ES-PU支架支持高密度培养,并且细胞亚群在培养两周内保持完整。ES-PU培养物中含有电耦合的心肌细胞,连接蛋白-43定位于细胞与细胞接触点。多细胞组织与微纤维方向相关,排列的材料产生高度定向的心肌细胞群。心房利钠肽是一种在心室细胞成熟过程中表达降低的分子标志物,在ES-PU支架上生长的培养物中比在组织培养聚苯乙烯上生长的培养物中显著更低。在排列的ES-PU上生长的细胞具有显著更低的心房利钠肽稳态水平,并且随着时间的推移组成性释放的心房利钠肽更少,这表明支架施加的细胞组织导致细胞表型转变为更成熟的状态。我们得出结论,ES-PU支架中微纤维的物理组织在体外影响多细胞结构和心脏细胞表型。

相似文献

1
Culture on electrospun polyurethane scaffolds decreases atrial natriuretic peptide expression by cardiomyocytes in vitro.
Biomaterials. 2008 Dec;29(36):4783-91. doi: 10.1016/j.biomaterials.2008.08.034. Epub 2008 Sep 26.
2
Hypertrophic phenotype in cardiac cell assemblies solely by structural cues and ensuing self-organization.
FASEB J. 2011 Mar;25(3):851-62. doi: 10.1096/fj.10-168625. Epub 2010 Nov 17.
4
Reduced Graphene-Oxide-Doped Elastic Biodegradable Polyurethane Fibers for Cardiomyocyte Maturation.
ACS Biomater Sci Eng. 2024 Jun 10;10(6):3759-3774. doi: 10.1021/acsbiomaterials.3c01908. Epub 2024 May 27.
6
Functional 3-D cardiac co-culture model using bioactive chitosan nanofiber scaffolds.
Biotechnol Bioeng. 2013 Feb;110(2):637-47. doi: 10.1002/bit.24727. Epub 2012 Oct 5.
7
Cardiomyocyte behavior on biodegradable polyurethane/gold nanocomposite scaffolds under electrical stimulation.
Mater Sci Eng C Mater Biol Appl. 2016 Feb;59:10-18. doi: 10.1016/j.msec.2015.09.074. Epub 2015 Sep 25.
8
Engineering an in vitro organotypic model for studying cardiac hypertrophy.
Colloids Surf B Biointerfaces. 2018 May 1;165:355-362. doi: 10.1016/j.colsurfb.2018.02.036. Epub 2018 Feb 27.

引用本文的文献

3
Novel Poly(ester urethane urea)/Polydioxanone Blends: Electrospun Fibrous Meshes and Films.
Molecules. 2021 Jun 24;26(13):3847. doi: 10.3390/molecules26133847.
5
Cardiac tissue engineering: current state-of-the-art materials, cells and tissue formation.
Einstein (Sao Paulo). 2018 Sep 21;16(3):eRB4538. doi: 10.1590/S1679-45082018RB4538.
6
Interfacial tissue engineering of heart regenerative medicine based on soft cell-porous scaffolds.
J Thorac Dis. 2018 Jul;10(Suppl 20):S2333-S2345. doi: 10.21037/jtd.2018.01.117.
7
Tissue Engineering Strategies for Myocardial Regeneration: Acellular Versus Cellular Scaffolds?
Tissue Eng Part B Rev. 2016 Dec;22(6):438-458. doi: 10.1089/ten.TEB.2015.0523. Epub 2016 Jul 21.
8
Tissue engineering the cardiac microenvironment: Multicellular microphysiological systems for drug screening.
Adv Drug Deliv Rev. 2016 Jan 15;96:225-33. doi: 10.1016/j.addr.2015.07.004. Epub 2015 Jul 23.
9
Opportunities for multicomponent hybrid hydrogels in biomedical applications.
Biomacromolecules. 2015 Jan 12;16(1):28-42. doi: 10.1021/bm501361c. Epub 2014 Dec 10.
10
Tough and flexible CNT-polymeric hybrid scaffolds for engineering cardiac constructs.
Biomaterials. 2014 Aug;35(26):7346-54. doi: 10.1016/j.biomaterials.2014.05.014. Epub 2014 Jun 10.

本文引用的文献

1
Cell patterning: interaction of cardiac myocytes and fibroblasts in three-dimensional culture.
Microsc Microanal. 2008 Apr;14(2):117-25. doi: 10.1017/S1431927608080021. Epub 2008 Mar 3.
2
Genetic insights into normal and abnormal heart development.
Cardiovasc Pathol. 2008 Jan-Feb;17(1):48-54. doi: 10.1016/j.carpath.2007.06.005. Epub 2007 Sep 12.
3
Laminar arrangement of ventricular myocytes influences electrical behavior of the heart.
Circ Res. 2007 Nov 9;101(10):e103-12. doi: 10.1161/CIRCRESAHA.107.161075. Epub 2007 Oct 18.
4
Skeletal myogenesis on highly orientated microfibrous polyesterurethane scaffolds.
J Biomed Mater Res A. 2008 Mar 15;84(4):1094-101. doi: 10.1002/jbm.a.31534.
5
Characterization of biodegradable polyurethane microfibers for tissue engineering.
J Biomater Sci Polym Ed. 2007;18(6):743-58. doi: 10.1163/156856207781034115.
7
Essential roles of the bHLH transcription factor Hrt2 in repression of atrial gene expression and maintenance of postnatal cardiac function.
Proc Natl Acad Sci U S A. 2007 May 8;104(19):7975-80. doi: 10.1073/pnas.0702447104. Epub 2007 Apr 27.
8
CHF1/Hey2 plays a pivotal role in left ventricular maturation through suppression of ectopic atrial gene expression.
Circ Res. 2007 Mar 30;100(6):850-5. doi: 10.1161/01.RES.0000261693.13269.bf. Epub 2007 Mar 1.
9
Rac1 activity is required for cardiac myocyte alignment in response to mechanical stress.
Biochem Biophys Res Commun. 2007 Feb 23;353(4):1023-7. doi: 10.1016/j.bbrc.2006.12.144. Epub 2006 Dec 27.
10
Determinants of natriuretic peptide gene expression.
Peptides. 2005 Jun;26(6):933-43. doi: 10.1016/j.peptides.2004.12.022. Epub 2005 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验