Chung Chiung-yin, Bien Harold, Sobie Eric A, Dasari Vikram, McKinnon David, Rosati Barbara, Entcheva Emilia
Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-8181, USA.
FASEB J. 2011 Mar;25(3):851-62. doi: 10.1096/fj.10-168625. Epub 2010 Nov 17.
In vitro models of cardiac hypertrophy focus exclusively on applying "external" dynamic signals (electrical, mechanical, and chemical) to achieve a hypertrophic state. In contrast, here we set out to demonstrate the role of "self-organized" cellular architecture and activity in reprogramming cardiac cell/tissue function toward a hypertrophic phenotype. We report that in neonatal rat cardiomyocyte culture, subtle out-of-plane microtopographic cues alter cell attachment, increase biomechanical stresses, and induce not only structural remodeling, but also yield essential molecular and electrophysiological signatures of hypertrophy. Increased cell size and cell binucleation, molecular up-regulation of released atrial natriuretic peptide, altered expression of classic hypertrophy markers, ion channel remodeling, and corresponding changes in electrophysiological function indicate a state of hypertrophy on par with other in vitro and in vivo models. Clinically used antihypertrophic pharmacological treatments partially reversed hypertrophic behavior in this in vitro model. Partial least-squares regression analysis, combining gene expression and functional data, yielded clear separation of phenotypes (control: cells grown on flat surfaces; hypertrophic: cells grown on quasi-3-dimensional surfaces and treated). In summary, structural surface features can guide cardiac cell attachment, and the subsequent syncytial behavior can facilitate trophic signals, unexpectedly on par with externally applied mechanical, electrical, and chemical stimulation.
心脏肥大的体外模型仅专注于施加“外部”动态信号(电、机械和化学信号)以实现肥大状态。相比之下,在此我们着手证明“自组织”细胞结构和活性在将心脏细胞/组织功能重编程为肥大表型中的作用。我们报告,在新生大鼠心肌细胞培养中,细微的平面外微观地形线索会改变细胞附着、增加生物力学应力,不仅诱导结构重塑,还会产生肥大的重要分子和电生理特征。细胞大小增加和细胞双核化、释放的心房利钠肽分子上调、经典肥大标志物表达改变、离子通道重塑以及电生理功能的相应变化表明处于与其他体外和体内模型相当的肥大状态。临床使用的抗肥大药物治疗在该体外模型中部分逆转了肥大行为。结合基因表达和功能数据的偏最小二乘回归分析产生了明显的表型分离(对照:在平坦表面上生长的细胞;肥大:在准三维表面上生长并经过处理的细胞)。总之,结构表面特征可引导心脏细胞附着,随后的合胞体行为可促进营养信号,出乎意料地与外部施加的机械、电和化学刺激相当。