Shlakhter Olesia, Malitsky Sergey, Segev Einat
Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel.
mSphere. 2025 Aug 26;10(8):e0013825. doi: 10.1128/msphere.00138-25. Epub 2025 Jul 18.
Understanding marine bacterial physiology under environmentally relevant conditions requires the study of biotic interactions across systems of varying complexities. Here, we examine how the capability of bacteria to produce tropodithietic acid (TDA), a secondary metabolite, influences microbial physiology and interactions. Our systematic approach, which includes progressing from bacterial monocultures to co-cultures and tri-cultures involving algal hosts, allows us to evaluate the impact of the gene and the TDA metabolite on microbial interactions. Our findings show that deleting the gene resulted in no detectable TDA production and affected bacteria-bacteria interactions in co-culture but not in tri-cultures with the algal host. Additionally, our data reveal that algal death was delayed in cultures containing Δ mutants compared to those with wild-type bacteria, although no TDA was detected in these tri-cultures. The findings of our study highlight the importance of microbial complexity in the study of bacterial physiology and point to the understudied role of TDA in microbial interactions.IMPORTANCELaboratory model systems enable controlled studies of marine microbial processes; however, the microbial complexity of the culture can influence the outcome. In this study, we employ a systematic approach to assess the impact of the bacterial ability to produce the antibiotic TDA in laboratory cultures with varying microbial complexities (from bacterial monocultures to bacterial co-cultures and algal-bacterial tri-cultures). Our findings demonstrate altered effects of the gene deletion with increasing microbial complexity, showing distinct impacts on microbial fitness. Since antibiotics like TDA mediate microbial interactions, it is important to examine them within ecologically relevant model systems that reflect inter- and intra-trophic interactions, including bacteria-bacteria and algae-bacteria relationships. Overall, our study highlights the importance of accounting for culture complexity when designing laboratory experiments to investigate microbial interactions and the compounds that mediate them.
在与环境相关的条件下理解海洋细菌生理学需要研究不同复杂程度系统中的生物相互作用。在此,我们研究细菌产生次生代谢产物 tropodithietic 酸(TDA)的能力如何影响微生物生理学和相互作用。我们的系统方法,包括从细菌单培养物发展到涉及藻类宿主的共培养物和三培养物,使我们能够评估该基因和 TDA 代谢产物对微生物相互作用的影响。我们的研究结果表明,删除该基因导致无法检测到 TDA 的产生,并影响了共培养中细菌与细菌之间的相互作用,但在与藻类宿主的三培养物中没有影响。此外,我们的数据显示,与含有野生型细菌的培养物相比,含有Δ突变体的培养物中藻类死亡延迟,尽管在这些三培养物中未检测到 TDA。我们的研究结果强调了微生物复杂性在细菌生理学研究中的重要性,并指出了 TDA 在微生物相互作用中未得到充分研究的作用。重要性实验室模型系统能够对海洋微生物过程进行可控研究;然而,培养物的微生物复杂性会影响结果。在本研究中,我们采用系统方法评估细菌产生抗生素 TDA 的能力在具有不同微生物复杂性的实验室培养物(从细菌单培养物到细菌共培养物和藻类 - 细菌三培养物)中的影响。我们的研究结果表明,随着微生物复杂性的增加,基因缺失的影响发生了改变,对微生物适应性产生了不同的影响。由于像 TDA 这样的抗生素介导微生物相互作用,在反映营养级间和营养级内相互作用(包括细菌 - 细菌和藻类 - 细菌关系)的生态相关模型系统中研究它们很重要。总体而言,我们的研究强调了在设计实验室实验以研究微生物相互作用及其介导化合物时考虑培养物复杂性的重要性。