Suppr超能文献

一种使用高通量测序技术识别RNA聚合酶II结合量变化的泊松混合模型。

A Poisson mixture model to identify changes in RNA polymerase II binding quantity using high-throughput sequencing technology.

作者信息

Feng Weixing, Liu Yunlong, Wu Jiejun, Nephew Kenneth P, Huang Tim H M, Li Lang

机构信息

Division of Biostatistics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.

出版信息

BMC Genomics. 2008 Sep 16;9 Suppl 2(Suppl 2):S23. doi: 10.1186/1471-2164-9-S2-S23.

Abstract

We present a mixture model-based analysis for identifying differences in the distribution of RNA polymerase II (Pol II) in transcribed regions, measured using ChIP-seq (chromatin immunoprecipitation following massively parallel sequencing technology). The statistical model assumes that the number of Pol II-targeted sequences contained within each genomic region follows a Poisson distribution. A Poisson mixture model was then developed to distinguish Pol II binding changes in transcribed region using an empirical approach and an expectation-maximization (EM) algorithm developed for estimation and inference. In order to achieve a global maximum in the M-step, a particle swarm optimization (PSO) was implemented. We applied this model to Pol II binding data generated from hormone-dependent MCF7 breast cancer cells and antiestrogen-resistant MCF7 breast cancer cells before and after treatment with 17beta-estradiol (E2). We determined that in the hormone-dependent cells, approximately 9.9% (2527) genes showed significant changes in Pol II binding after E2 treatment. However, only approximately 0.7% (172) genes displayed significant Pol II binding changes in E2-treated antiestrogen-resistant cells. These results show that a Poisson mixture model can be used to analyze ChIP-seq data.

摘要

我们提出了一种基于混合模型的分析方法,用于识别转录区域中RNA聚合酶II(Pol II)分布的差异,该差异通过ChIP-seq(大规模平行测序技术后的染色质免疫沉淀)进行测量。统计模型假定每个基因组区域内包含的Pol II靶向序列数量服从泊松分布。然后开发了一种泊松混合模型,使用经验方法和为估计与推断而开发的期望最大化(EM)算法来区分转录区域中Pol II的结合变化。为了在M步中实现全局最大值,实施了粒子群优化(PSO)。我们将此模型应用于从激素依赖性MCF7乳腺癌细胞以及用17β-雌二醇(E2)处理前后的抗雌激素MCF7乳腺癌细胞产生的Pol II结合数据。我们确定,在激素依赖性细胞中,约9.9%(2527个)基因在E2处理后显示出Pol II结合的显著变化。然而,在E2处理的抗雌激素抗性细胞中,仅约0.7%(172个)基因显示出显著的Pol II结合变化。这些结果表明,泊松混合模型可用于分析ChIP-seq数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b533/2559888/1f69801566d6/1471-2164-9-S2-S23-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验