Suppr超能文献

ChIP-seq 数据的比较研究:标准化和结合模式特征分析。

Comparative study on ChIP-seq data: normalization and binding pattern characterization.

机构信息

Department of Molecular Virology, Immunology & Medical Genetics, Ohio State University, Columbus, OH 43210, USA.

出版信息

Bioinformatics. 2009 Sep 15;25(18):2334-40. doi: 10.1093/bioinformatics/btp384. Epub 2009 Jun 26.

Abstract

MOTIVATION

Antibody-based Chromatin Immunoprecipitation assay followed by high-throughput sequencing technology (ChIP-seq) is a relatively new method to study the binding patterns of specific protein molecules over the entire genome. ChIP-seq technology allows scientist to get more comprehensive results in shorter time. Here, we present a non-linear normalization algorithm and a mixture modeling method for comparing ChIP-seq data from multiple samples and characterizing genes based on their RNA polymerase II (Pol II) binding patterns.

RESULTS

We apply a two-step non-linear normalization method based on locally weighted regression (LOESS) approach to compare ChIP-seq data across multiple samples and model the difference using an Exponential-Normal(K) mixture model. Fitted model is used to identify genes associated with differential binding sites based on local false discovery rate (fdr). These genes are then standardized and hierarchically clustered to characterize their Pol II binding patterns. As a case study, we apply the analysis procedure comparing normal breast cancer (MCF7) to tamoxifen-resistant (OHT) cell line. We find enriched regions that are associated with cancer (P < 0.0001). Our findings also imply that there may be a dysregulation of cell cycle and gene expression control pathways in the tamoxifen-resistant cells. These results show that the non-linear normalization method can be used to analyze ChIP-seq data across multiple samples.

AVAILABILITY

Data are available at http://www.bmi.osu.edu/~khuang/Data/ChIP/RNAPII/.

摘要

动机

基于抗体的染色质免疫沉淀检测技术(ChIP)结合高通量测序技术(ChIP-seq)是一种研究特定蛋白质分子在整个基因组上的结合模式的相对较新的方法。ChIP-seq 技术可以让科学家在更短的时间内获得更全面的结果。在这里,我们提出了一种非线性归一化算法和一种混合建模方法,用于比较多个样本的 ChIP-seq 数据,并根据其 RNA 聚合酶 II(Pol II)结合模式对基因进行特征化。

结果

我们应用了一种两步非线性归一化方法,该方法基于局部加权回归(LOESS)方法,用于比较多个样本的 ChIP-seq 数据,并使用指数-正态(K)混合模型来模拟差异。拟合模型用于根据局部假发现率(fdr)识别与差异结合位点相关的基因。然后对这些基因进行标准化和层次聚类,以描述它们的 Pol II 结合模式。作为一个案例研究,我们应用该分析程序比较了正常乳腺癌(MCF7)和他莫昔芬耐药(OHT)细胞系。我们发现了与癌症相关的富集区域(P < 0.0001)。我们的发现还表明,在他莫昔芬耐药细胞中,细胞周期和基因表达调控途径可能存在失调。这些结果表明,非线性归一化方法可用于分析多个样本的 ChIP-seq 数据。

可用性

数据可在 http://www.bmi.osu.edu/~khuang/Data/ChIP/RNAPII/ 获得。

相似文献

1
Comparative study on ChIP-seq data: normalization and binding pattern characterization.
Bioinformatics. 2009 Sep 15;25(18):2334-40. doi: 10.1093/bioinformatics/btp384. Epub 2009 Jun 26.
3
A signal processing approach for enriched region detection in RNA polymerase II ChIP-seq data.
BMC Bioinformatics. 2012 Mar 13;13 Suppl 2(Suppl 2):S2. doi: 10.1186/1471-2105-13-S2-S2.
6
Is this the right normalization? A diagnostic tool for ChIP-seq normalization.
BMC Bioinformatics. 2015 May 9;16:150. doi: 10.1186/s12859-015-0579-z.
7
Differential motif enrichment analysis of paired ChIP-seq experiments.
BMC Genomics. 2014 Sep 2;15(1):752. doi: 10.1186/1471-2164-15-752.
8
Genome-wide mapping of RNA Pol-II promoter usage in mouse tissues by ChIP-seq.
Methods Mol Biol. 2014;1176:1-9. doi: 10.1007/978-1-4939-0992-6_1.
9
DIME: R-package for identifying differential ChIP-seq based on an ensemble of mixture models.
Bioinformatics. 2011 Jun 1;27(11):1569-70. doi: 10.1093/bioinformatics/btr165. Epub 2011 Apr 5.

引用本文的文献

2
CHIPIN: ChIP-seq inter-sample normalization based on signal invariance across transcriptionally constant genes.
BMC Bioinformatics. 2021 Aug 17;22(1):407. doi: 10.1186/s12859-021-04320-3.
3
Chromatin Immunoprecipitation Followed by Next-Generation Sequencing (ChIP-Seq) Analysis in Ewing Sarcoma.
Methods Mol Biol. 2021;2226:265-284. doi: 10.1007/978-1-0716-1020-6_21.
4
ATAC-seq normalization method can significantly affect differential accessibility analysis and interpretation.
Epigenetics Chromatin. 2020 Apr 22;13(1):22. doi: 10.1186/s13072-020-00342-y.
5
7
Epimetheus - a multi-profile normalizer for epigenomic sequencing data.
BMC Bioinformatics. 2017 May 12;18(1):259. doi: 10.1186/s12859-017-1655-3.
8
DGW: an exploratory data analysis tool for clustering and visualisation of epigenomic marks.
BMC Bioinformatics. 2016 Dec 13;17(Suppl 16):447. doi: 10.1186/s12859-016-1306-0.
9
Recent advances in ChIP-seq analysis: from quality management to whole-genome annotation.
Brief Bioinform. 2017 Mar 1;18(2):279-290. doi: 10.1093/bib/bbw023.

本文引用的文献

1
A Robust Unified Approach to Analyzing Methylation and Gene Expression Data.
Comput Stat Data Anal. 2009 Mar 15;53(5):1701-1710. doi: 10.1016/j.csda.2008.07.010.
2
ChIP-Seq of ERalpha and RNA polymerase II defines genes differentially responding to ligands.
EMBO J. 2009 May 20;28(10):1418-28. doi: 10.1038/emboj.2009.88. Epub 2009 Apr 4.
3
PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls.
Nat Biotechnol. 2009 Jan;27(1):66-75. doi: 10.1038/nbt.1518. Epub 2009 Jan 4.
4
Design and analysis of ChIP-seq experiments for DNA-binding proteins.
Nat Biotechnol. 2008 Dec;26(12):1351-9. doi: 10.1038/nbt.1508. Epub 2008 Nov 16.
5
An integrated software system for analyzing ChIP-chip and ChIP-seq data.
Nat Biotechnol. 2008 Nov;26(11):1293-300. doi: 10.1038/nbt.1505. Epub 2008 Nov 2.
7
Model-based analysis of ChIP-Seq (MACS).
Genome Biol. 2008;9(9):R137. doi: 10.1186/gb-2008-9-9-r137. Epub 2008 Sep 17.
8
An HMM approach to genome-wide identification of differential histone modification sites from ChIP-seq data.
Bioinformatics. 2008 Oct 15;24(20):2344-9. doi: 10.1093/bioinformatics/btn402. Epub 2008 Jul 29.
10
Whole-genome cartography of estrogen receptor alpha binding sites.
PLoS Genet. 2007 Jun;3(6):e87. doi: 10.1371/journal.pgen.0030087. Epub 2007 Apr 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验