Dragonieri Silvano, Annema Jouke T, Schot Robert, van der Schee Marc P C, Spanevello Antonio, Carratú Pierluigi, Resta Onofrio, Rabe Klaus F, Sterk Peter J
Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands.
Lung Cancer. 2009 May;64(2):166-70. doi: 10.1016/j.lungcan.2008.08.008. Epub 2008 Oct 1.
Exhaled breath contains thousands of gaseous volatile organic compounds (VOCs) that may be used as non-invasive markers of lung disease. The electronic nose analyzes VOCs by composite nano-sensor arrays with learning algorithms. It has been shown that an electronic nose can distinguish the VOCs pattern in exhaled breath of lung cancer patients from healthy controls. We hypothesized that an electronic nose can discriminate patients with lung cancer from COPD patients and healthy controls by analyzing the VOC-profile in exhaled breath.
30 subjects participated in a cross-sectional study: 10 patients with non-small cell lung cancer (NSCLC, [age 66.4+/-9.0, FEV(1) 86.3+/-20.7]), 10 patients with COPD (age 61.4+/-5.5, FEV(1) 70.0+/-14.8) and 10 healthy controls (age 58.3+/-8.1, FEV(1) 108.9+/-14.6). After 5 min tidal breathing through a non-rebreathing valve with inspiratory VOC-filter, subjects performed a single vital capacity maneuver to collect dried exhaled air into a Tedlar bag. The bag was connected to the electronic nose (Cyranose 320) within 10 min, with VOC-filtered room air as baseline. The smellprints were analyzed by onboard statistical software.
Smellprints from NSCLC patients clustered distinctly from those of COPD subjects (cross validation value [CVV]: 85%; M-distance: 3.73). NSCLC patients could also be discriminated from healthy controls in duplicate measurements (CVV: 90% and 80%, respectively; M-distance: 2.96 and 2.26).
VOC-patterns of exhaled breath discriminates patients with lung cancer from COPD patients as well as healthy controls. The electronic nose may qualify as a non-invasive diagnostic tool for lung cancer in the future.
呼出气体中含有数千种气态挥发性有机化合物(VOCs),这些化合物可用作肺部疾病的非侵入性标志物。电子鼻通过带有学习算法的复合纳米传感器阵列分析VOCs。已有研究表明,电子鼻能够区分肺癌患者呼出气体中的VOCs模式与健康对照者的模式。我们推测,电子鼻可通过分析呼出气体中的VOC谱,将肺癌患者与慢性阻塞性肺疾病(COPD)患者及健康对照者区分开来。
30名受试者参与了一项横断面研究:10例非小细胞肺癌(NSCLC)患者(年龄66.4±9.0岁,第1秒用力呼气容积[FEV(1)]86.3±20.7),10例COPD患者(年龄61.4±5.5岁,FEV(1)70.0±14.8)和10名健康对照者(年龄58.3±8.1岁,FEV(1)108.9±14.6)。受试者通过带有吸气VOC过滤器的非重复呼吸阀进行5分钟的潮式呼吸后,进行一次肺活量动作,将干燥的呼出空气收集到一个泰德拉袋中。在10分钟内将袋子连接到电子鼻(Cyranose 320)上,以经过VOC过滤的室内空气作为基线。通过机载统计软件分析气味指纹。
NSCLC患者的气味指纹与COPD受试者的气味指纹明显聚类分开(交叉验证值[CVV]:85%;M距离:3.73)。在重复测量中,NSCLC患者也可与健康对照者区分开来(CVV分别为90%和80%;M距离分别为2.96和2.26)。
呼出气体的VOC模式可将肺癌患者与COPD患者以及健康对照者区分开来。电子鼻未来可能成为肺癌的一种非侵入性诊断工具。