Suppr超能文献

评估用于从口述临床记录中提取用药信息的商用自然语言处理引擎。

Assessment of commercial NLP engines for medication information extraction from dictated clinical notes.

作者信息

Jagannathan V, Mullett Charles J, Arbogast James G, Halbritter Kevin A, Yellapragada Deepthi, Regulapati Sushmitha, Bandaru Pavani

机构信息

MedQuist Inc., 235 High Street, Suite 213, Morgantown, WV 26505, USA.

出版信息

Int J Med Inform. 2009 Apr;78(4):284-91. doi: 10.1016/j.ijmedinf.2008.08.006. Epub 2008 Oct 5.

Abstract

PURPOSE

We assessed the current state of commercial natural language processing (NLP) engines for their ability to extract medication information from textual clinical documents.

METHODS

Two thousand de-identified discharge summaries and family practice notes were submitted to four commercial NLP engines with the request to extract all medication information. The four sets of returned results were combined to create a comparison standard which was validated against a manual, physician-derived gold standard created from a subset of 100 reports. Once validated, the individual vendor results for medication names, strengths, route, and frequency were compared against this automated standard with precision, recall, and F measures calculated.

RESULTS

Compared with the manual, physician-derived gold standard, the automated standard was successful at accurately capturing medication names (F measure=93.2%), but performed less well with strength (85.3%) and route (80.3%), and relatively poorly with dosing frequency (48.3%). Moderate variability was seen in the strengths of the four vendors. The vendors performed better with the structured discharge summaries than with the clinic notes in an analysis comparing the two document types.

CONCLUSION

Although automated extraction may serve as the foundation for a manual review process, it is not ready to automate medication lists without human intervention.

摘要

目的

我们评估了商用自然语言处理(NLP)引擎从文本临床文档中提取用药信息的能力。

方法

向四个商用NLP引擎提交了2000份去识别化的出院小结和家庭医疗记录,并要求提取所有用药信息。将四组返回结果合并以创建一个比较标准,并与从100份报告子集中生成的由医生人工得出的金标准进行验证。验证后,将各供应商关于药物名称、剂量、给药途径和频率的结果与这个自动化标准进行比较,并计算精确率、召回率和F值。

结果

与由医生人工得出的金标准相比,自动化标准在准确捕捉药物名称方面很成功(F值=93.2%),但在剂量(85.3%)和给药途径(80.3%)方面表现较差,在给药频率方面(48.3%)表现相对较差。四个供应商的剂量存在中度差异。在比较两种文档类型的分析中,供应商处理结构化出院小结比处理临床记录表现更好。

结论

虽然自动化提取可为人工审核流程奠定基础,但在没有人工干预的情况下,还无法自动生成用药清单。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验