Medical Center for Information and Communication Technology, Universitätsklinikum Erlangen, Erlangen, Germany.
Department of Pediatrics and Adolescent Medicine, Universitätsklinikum Erlangen, Erlangen, Germany.
Stud Health Technol Inform. 2021 May 24;278:224-230. doi: 10.3233/SHTI210073.
The aim of this study is to evaluate the use of a natural language processing (NLP) software to extract medication statements from unstructured medical discharge letters.
Ten randomly selected discharge letters were extracted from the data warehouse of the University Hospital Erlangen (UHE) and manually annotated to create a gold standard. The AHD NLP tool, provided by MIRACUM's industry partner was used to annotate these discharge letters. Annotations by the NLP tool where then compared to the gold standard on two levels: phrase precision (whether or not the whole medication statement has been identified correctly) and token precision (whether or not the medication name has been identified correctly within correctly discovered medication phrases).
The NLP tool detected medication related phrases with an overall F-measure of 0.852. The medication name has been identified correctly with an overall F-measure of 0.936.
This proof-of-concept study is a first step towards an automated scalable evaluation system for MIRACUM's industry partner's NLP tool by using a gold standard. Medication phrases and names have been correctly identified in most cases by the NLP system. Future effort needs to be put into extending and validating the gold standard.
本研究旨在评估自然语言处理(NLP)软件从非结构化医疗出院记录中提取药物陈述的用途。
从埃尔朗根大学医院(UHE)的数据仓库中随机抽取了 10 封出院记录,并进行了手动注释以创建黄金标准。使用 MIRACUM 的行业合作伙伴提供的 AHD NLP 工具对这些出院记录进行注释。然后,在两个级别上将 NLP 工具的注释与黄金标准进行比较:短语精度(整个药物陈述是否被正确识别)和标记精度(在正确发现的药物短语中药物名称是否被正确识别)。
NLP 工具检测到与药物相关的短语的总体 F 度量为 0.852。药物名称的总体 F 度量为 0.936。
这项概念验证研究是通过使用黄金标准为 MIRACUM 的行业合作伙伴的 NLP 工具建立自动可扩展评估系统的第一步。在大多数情况下,NLP 系统正确识别了药物短语和名称。未来需要努力扩展和验证黄金标准。