Suppr超能文献

溶液、蛋白质及电化学中的质子耦合电子转移

Proton-coupled electron transfer in solution, proteins, and electrochemistry.

作者信息

Hammes-Schiffer Sharon, Soudackov Alexander V

机构信息

Department of Chemistry, 104 Chemistry Building, Pennsylvania State University, University Park, Pennsylvania 16802, USA.

出版信息

J Phys Chem B. 2008 Nov 13;112(45):14108-23. doi: 10.1021/jp805876e. Epub 2008 Oct 9.

Abstract

Recent advances in the theoretical treatment of proton-coupled electron transfer (PCET) reactions are reviewed. These reactions play an important role in a wide range of biological processes, as well as in fuel cells, solar cells, chemical sensors, and electrochemical devices. A unified theoretical framework has been developed to describe both sequential and concerted PCET, as well as hydrogen atom transfer (HAT). A quantitative diagnostic has been proposed to differentiate between HAT and PCET in terms of the degree of electronic nonadiabaticity, where HAT corresponds to electronically adiabatic proton transfer and PCET corresponds to electronically nonadiabatic proton transfer. In both cases, the overall reaction is typically vibronically nonadiabatic. A series of rate constant expressions have been derived in various limits by describing the PCET reactions in terms of nonadiabatic transitions between electron-proton vibronic states. These expressions account for the solvent response to both electron and proton transfer and the effects of the proton donor-acceptor vibrational motion. The solvent and protein environment can be represented by a dielectric continuum or described with explicit molecular dynamics. These theoretical treatments have been applied to numerous PCET reactions in solution and proteins. Expressions for heterogeneous rate constants and current densities for electrochemical PCET have also been derived and applied to model systems.

摘要

本文综述了质子耦合电子转移(PCET)反应理论处理方面的最新进展。这些反应在广泛的生物过程以及燃料电池、太阳能电池、化学传感器和电化学装置中都起着重要作用。现已开发出一个统一的理论框架,用于描述相继和协同的PCET以及氢原子转移(HAT)。有人提出了一种定量诊断方法,根据电子非绝热程度来区分HAT和PCET,其中HAT对应于电子绝热质子转移,而PCET对应于电子非绝热质子转移。在这两种情况下,整体反应通常都是振转非绝热的。通过用电子 - 质子振动态之间的非绝热跃迁来描述PCET反应,在各种极限情况下推导出了一系列速率常数表达式。这些表达式考虑了溶剂对电子和质子转移的响应以及质子供体 - 受体振动运动的影响。溶剂和蛋白质环境可以用介电连续介质来表示,也可以用显式分子动力学来描述。这些理论处理方法已应用于溶液和蛋白质中的众多PCET反应。还推导了电化学PCET的异质速率常数和电流密度的表达式,并将其应用于模型系统。

相似文献

1
Proton-coupled electron transfer in solution, proteins, and electrochemistry.
J Phys Chem B. 2008 Nov 13;112(45):14108-23. doi: 10.1021/jp805876e. Epub 2008 Oct 9.
2
Theory of proton-coupled electron transfer in energy conversion processes.
Acc Chem Res. 2009 Dec 21;42(12):1881-9. doi: 10.1021/ar9001284.
3
Explaining Kinetic Isotope Effects in Proton-Coupled Electron Transfer Reactions.
Acc Chem Res. 2025 Apr 15;58(8):1335-1344. doi: 10.1021/acs.accounts.5c00119. Epub 2025 Apr 4.
4
Proton-coupled electron transfer versus hydrogen atom transfer: generation of charge-localized diabatic states.
J Phys Chem A. 2011 Mar 24;115(11):2367-77. doi: 10.1021/jp111210c. Epub 2011 Feb 25.
6
Theoretical analysis of proton relays in electrochemical proton-coupled electron transfer.
J Am Chem Soc. 2011 Jun 1;133(21):8282-92. doi: 10.1021/ja201560v. Epub 2011 May 11.
7
Dependence of Vibronic Coupling on Molecular Geometry and Environment: Bridging Hydrogen Atom Transfer and Electron-Proton Transfer.
J Am Chem Soc. 2015 Oct 28;137(42):13545-55. doi: 10.1021/jacs.5b07327. Epub 2015 Oct 13.
9
Comparison of hydride, hydrogen atom, and proton-coupled electron transfer reactions.
Chemphyschem. 2002 Jan 18;3(1):33-42. doi: 10.1002/1439-7641(20020118)3:1<33::AID-CPHC33>3.0.CO;2-6.

引用本文的文献

1
A Foundational Shift in Models for Enzyme Function.
J Am Chem Soc. 2025 May 7;147(18):14884-14904. doi: 10.1021/jacs.5c02388. Epub 2025 Apr 25.
2
Explaining Kinetic Isotope Effects in Proton-Coupled Electron Transfer Reactions.
Acc Chem Res. 2025 Apr 15;58(8):1335-1344. doi: 10.1021/acs.accounts.5c00119. Epub 2025 Apr 4.
3
Observation of an Associative State in Aqueous Hydroxide.
J Am Chem Soc. 2025 Mar 19;147(11):9190-9197. doi: 10.1021/jacs.4c13453. Epub 2025 Mar 10.
4
Evidence for Competing Proton-Coupled Reaction Pathways of Molecular Triads in a Low-Polarity Solvent.
J Phys Chem A. 2025 Feb 20;129(7):1792-1800. doi: 10.1021/acs.jpca.4c05734. Epub 2025 Feb 6.
7
A dual experimental-theoretical perspective on ESPT photoacids and their challenges ahead.
Chem Sci. 2024 Dec 2;16(4):1560-1596. doi: 10.1039/d4sc07148d. eCollection 2025 Jan 22.
9
Proton-Coupled Electron Transfer upon Oxidation of Tyrosine in a De Novo Protein: Analysis of Proton Acceptor Candidates.
Biochemistry. 2024 Aug 6;63(15):1999-2008. doi: 10.1021/acs.biochem.4c00211. Epub 2024 Jul 18.
10
Proton-Coupled Electron Transfer and Hydrogen Tunneling in Olive Oil Phenol Reactions.
Int J Mol Sci. 2024 Jun 7;25(12):6341. doi: 10.3390/ijms25126341.

本文引用的文献

1
A hydrogen-atom abstraction model for the function of YZ in photosynthetic oxygen evolution.
Photosynth Res. 1995 Nov;46(1-2):177-84. doi: 10.1007/BF00020428.
3
Theoretical Studies of Proton-Coupled Electron Transfer: Models and Concepts Relevant to Bioenergetics.
Coord Chem Rev. 2008 Feb 1;252(3-4):384-394. doi: 10.1016/j.ccr.2007.07.019.
6
Redox-coupled proton pumping in cytochrome c oxidase: further insights from computer simulation.
Biochim Biophys Acta. 2008 Feb;1777(2):196-201. doi: 10.1016/j.bbabio.2007.11.008. Epub 2007 Dec 4.
7
Proton-coupled electron transfer of tyrosine oxidation: buffer dependence and parallel mechanisms.
J Am Chem Soc. 2007 Dec 19;129(50):15462-4. doi: 10.1021/ja073012u. Epub 2007 Nov 21.
8
Proton-coupled electron transfer.
Chem Rev. 2007 Nov;107(11):5004-64. doi: 10.1021/cr0500030.
9
The role of free energy change in coupled electron-proton transfer.
J Am Chem Soc. 2007 Dec 12;129(49):15098-9. doi: 10.1021/ja072558d. Epub 2007 Nov 14.
10
Buffer-assisted proton-coupled electron transfer in a model rhenium-tyrosine complex.
J Am Chem Soc. 2007 Sep 12;129(36):11146-52. doi: 10.1021/ja072708k. Epub 2007 Aug 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验