Wang Zhanfeng, Fu Xiaodi, Diao Wenwen, Wu Yao, Rovira Carme, Wang Binju
Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University Zhuhai 519087 China
Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) Wenzhou Zhejiang 325000 China.
Chem Sci. 2025 Jan 10;16(7):3173-3186. doi: 10.1039/d4sc06906d. eCollection 2025 Feb 12.
Lytic polysaccharide monooxygenases (LPMOs) are a unique group of monocopper enzymes that exhibit remarkable ability to catalyze the oxidative cleavage of recalcitrant carbohydrate substrates, such as cellulose and chitin, by utilizing O or HO as the oxygen source. One of the key challenges in understanding the catalytic mechanism of LPMOs lies in deciphering how they activate dioxygen using diverse reductants. To shed light on this intricate process, we conducted in-depth investigations using quantum mechanical/molecular mechanical (QM/MM) metadynamics simulations, molecular dynamics (MD) simulations, and density functional theory (DFT) calculations. Specifically, our study focuses on elucidating the formation mechanism of HO by LPMOs in the presence of cellobiose dehydrogenase (CDH), a proposed natural reductant of LPMOs. Our findings reveal a proton-coupled electron transfer (PCET) process in generating the Cu(ii)-hydroperoxide intermediate from the Cu(ii)-superoxide intermediate. Subsequently, a direct proton transfer to the proximal oxygen of Cu(ii)-hydroperoxide results in the formation of HO and LPMO-Cu(ii). Notably, this mechanism significantly differs from the LPMO/ascorbate system, where two hydrogen atom transfer reactions are responsible for generating HO and LPMO-Cu(i). Based on our simulations, we propose a catalytic mechanism of LPMO in the presence of CDH and the polysaccharide substrate, which involves competitive binding of the substrate and CDH to the reduced LPMOs. While the CDH-bound LPMOs can activate dioxygen to generate HO, the substrate-bound LPMOs can employ the HO generated from the LPMO/CDH system to perform the peroxygenase reactions of the polysaccharide substrate. Our work not only provides valuable insights into the reductant-dependent mechanisms of O activation in LPMOs but also holds implications for understanding the functions of these enzymes in their natural environment.
裂解多糖单加氧酶(LPMOs)是一类独特的单铜酶,具有显著的能力,能够利用O₂或H₂O₂作为氧源,催化诸如纤维素和几丁质等难降解碳水化合物底物的氧化裂解。理解LPMOs催化机制的关键挑战之一在于弄清楚它们如何利用多种还原剂激活双原子氧。为了阐明这一复杂过程,我们使用量子力学/分子力学(QM/MM)元动力学模拟、分子动力学(MD)模拟和密度泛函理论(DFT)计算进行了深入研究。具体而言,我们的研究聚焦于在存在纤维二糖脱氢酶(CDH)的情况下,LPMOs生成H₂O₂的机制,CDH是LPMOs一种假定的天然还原剂。我们的研究结果揭示了从Cu(ii)-超氧化物中间体生成Cu(ii)-氢过氧化物中间体的质子耦合电子转移(PCET)过程。随后,向Cu(ii)-氢过氧化物的近端氧直接进行质子转移,导致生成H₂O₂和LPMO-Cu(ii)。值得注意的是,该机制与LPMO/抗坏血酸体系有显著不同,在LPMO/抗坏血酸体系中,两个氢原子转移反应负责生成H₂O₂和LPMO-Cu(i)。基于我们的模拟,我们提出了在存在CDH和多糖底物的情况下LPMO的催化机制,该机制涉及底物和CDH与还原态LPMOs的竞争性结合。虽然与CDH结合的LPMOs能够激活双原子氧生成H₂O₂,但与底物结合的LPMOs可以利用LPMO/CDH体系生成的H₂O₂来进行多糖底物的过氧合酶反应。我们的工作不仅为LPMOs中O₂激活的还原剂依赖性机制提供了有价值的见解,也对理解这些酶在其天然环境中的功能具有重要意义。