Suppr超能文献

支持向量回归中的一种新的求解路径算法。

A new solution path algorithm in support vector regression.

作者信息

Wang Gang, Yeung Dit-Yan, Lochovsky Frederick H

机构信息

Hong Kong University of Science and Technology, Hong Kong, China.

出版信息

IEEE Trans Neural Netw. 2008 Oct;19(10):1753-67. doi: 10.1109/TNN.2008.2002077.

Abstract

In this paper, regularization path algorithms were proposed as a novel approach to the model selection problem by exploring the path of possibly all solutions with respect to some regularization hyperparameter in an efficient way. This approach was later extended to a support vector regression (SVR) model called epsilon-SVR. However, the method requires that the error parameter epsilon be set a priori. This is only possible if the desired accuracy of the approximation can be specified in advance. In this paper, we analyze the solution space for epsilon-SVR and propose a new solution path algorithm, called epsilon-path algorithm, which traces the solution path with respect to the hyperparameter epsilon rather than lambda. Although both two solution path algorithms possess the desirable piecewise linearity property, our epsilon-path algorithm overcomes some limitations of the original lambda-path algorithm and has more advantages. It is thus more appealing for practical use.

摘要

在本文中,正则化路径算法作为一种解决模型选择问题的新方法被提出,该方法通过有效探索关于某个正则化超参数的所有可能解的路径来实现。此方法后来被扩展到一个名为ε - 支持向量回归(SVR)的模型。然而,该方法要求预先设定误差参数ε。只有当可以提前指定所需的近似精度时,这才有可能实现。在本文中,我们分析了ε - SVR的解空间,并提出了一种新的解路径算法,称为ε - 路径算法,它跟踪关于超参数ε而非λ的解路径。尽管这两种解路径算法都具有理想的分段线性特性,但我们的ε - 路径算法克服了原始λ - 路径算法的一些局限性,具有更多优势。因此,它在实际应用中更具吸引力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验