Wadhawan Samir, Dickins Benjamin, Nekrutenko Anton
Center for Comparative Genomics and Bioinformatics, Huck Institutes for the Life Sciences, Penn State University, USA.
Mol Biol Evol. 2008 Dec;25(12):2745-57. doi: 10.1093/molbev/msn229. Epub 2008 Oct 8.
The Gnas and Gnal loci, which encode the alpha subunits of stimulatory G-proteins, are among the most complex eukaryotic genes. They combine elaborate patterns of imprinting, alternative splicing, and antisense transcription with tissue- and developmental stage-specific expression. Different regions of these genes evolve at drastically different rates such that some show complete conservation, whereas others are virtually unalignable. Yet, the most unusual feature of the Gnas/Gnal complex is the presence of the longest known overlap between coding regions resulting in the production of two unrelated proteins: XLalphas and its putative regulator ALEX. Here we elucidate the evolutionary history of both loci and uncover new complexities. First, alternatively spliced regions of both loci evolve under varying selective regimes echoing their distinct biological roles. Second, an enigmatic alternative transcript of the Gnas locus, known as Nesp, is likely bicistronic. Third, rodent XLalphas and ALEX follow an evolutionary trajectory distinct from that of other mammals and show extensive sequence variation in the internal repeat region, a fact that might be explained by variation in the robustness of imprinting. Fourth, we show that the overlap between the XLalphas and ALEX frames is restricted to eutherian mammals. Finally, we reconcile our findings with extensive physiological data derived from animal models.
编码刺激性G蛋白α亚基的Gnas和Gnal基因座是最复杂的真核基因之一。它们将精细的印记模式、可变剪接和反义转录与组织及发育阶段特异性表达结合在一起。这些基因的不同区域以截然不同的速率进化,以至于有些区域显示出完全保守,而另一些区域几乎无法比对。然而,Gnas/Gnal复合体最不寻常的特征是编码区域之间存在已知最长的重叠,从而产生两种不相关的蛋白质:XLalphas及其假定的调节因子ALEX。在这里,我们阐明了这两个基因座的进化历史,并揭示了新的复杂性。首先,两个基因座的可变剪接区域在不同的选择机制下进化,这反映了它们不同的生物学作用。其次,Gnas基因座的一个神秘的可变转录本,即Nesp,可能是双顺反子的。第三,啮齿动物的XLalphas和ALEX遵循与其他哺乳动物不同的进化轨迹,并且在内部重复区域显示出广泛的序列变异,这一事实可能由印记强度的变化来解释。第四,我们表明XLalphas和ALEX框架之间的重叠仅限于真兽类哺乳动物。最后,我们将我们的发现与从动物模型获得的大量生理数据进行了协调。