Suppr超能文献

《视觉-运动技能测验修订版(TVMS-R)》的结构效度:基于拉施测量模型的评估

Construct validity of the Test of Visual-Motor Skills-Revised (TVMS-R): an evaluation using the Rasch Measurement Model.

作者信息

Brown Ted, Unsworth Carolyn

机构信息

Department of Occupational Therapy, School of Primary Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University - Peninsula Campus, Frankston, Victoria, Australia.

出版信息

Scand J Occup Ther. 2009 Sep;16(3):133-45. doi: 10.1080/11038120802443662.

Abstract

Construct validity of instruments, tests, and scales can be examined using the Rasch Measurement Model (RMM) during their initial construction and validation, or after they have been published. The aim of this study was to examine the construct validity of the Test of Visual-Motor Skills-Revised (TVMS-R) by applying the RMM to evaluate its scalability, dimensionality, differential item functioning, and hierarchical ordering. The participants included 400 children aged 5 to 12 years, recruited from six schools in the Melbourne metropolitan area, Victoria, Australia. Children completed the TVMS-R under the supervision of an occupational therapist. Overall, 39 out of 142 of the TVMS-R scale scoring accuracy classification criteria items exhibited poor measurement properties. As nearly one-third of the scoring classification criteria items were found to be problematic, the TVMS-R in its current form is not recommended for clinical use, as it is not consistent with the clinical demands expected of an instrument used to evaluate the visual motor integration skills of children.

摘要

在仪器、测试和量表的初始构建与验证过程中,或在其发表之后,可以使用拉施测量模型(RMM)来检验其结构效度。本研究的目的是通过应用RMM来评估其可扩展性、维度性、项目功能差异和层次排序,从而检验修订版视觉运动技能测试(TVMS-R)的结构效度。参与者包括从澳大利亚维多利亚州墨尔本都会区的六所学校招募的400名5至12岁的儿童。儿童在职业治疗师的监督下完成了TVMS-R测试。总体而言,TVMS-R量表评分准确性分类标准中的142项中有39项表现出较差的测量特性。由于近三分之一的评分分类标准项目被发现存在问题,因此不建议将当前形式的TVMS-R用于临床,因为它不符合用于评估儿童视觉运动整合技能的仪器所预期的临床要求。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验