Dudko Olga K, Hummer Gerhard, Szabo Attila
Department of Physics and Center for Theoretical Biological Physics, University of California at San Diego, La Jolla, CA 92093, USA.
Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):15755-60. doi: 10.1073/pnas.0806085105. Epub 2008 Oct 13.
Dynamic force spectroscopy probes the kinetic and thermodynamic properties of single molecules and molecular assemblies. Here, we propose a simple procedure to extract kinetic information from such experiments. The cornerstone of our method is a transformation of the rupture-force histograms obtained at different force-loading rates into the force-dependent lifetimes measurable in constant-force experiments. To interpret the force-dependent lifetimes, we derive a generalization of Bell's formula that is formally exact within the framework of Kramers theory. This result complements the analytical expression for the lifetime that we derived previously for a class of model potentials. We illustrate our procedure by analyzing the nanopore unzipping of DNA hairpins and the unfolding of a protein attached by flexible linkers to an atomic force microscope. Our procedure to transform rupture-force histograms into the force-dependent lifetimes remains valid even when the molecular extension is a poor reaction coordinate and higher-dimensional free-energy surfaces must be considered. In this case the microscopic interpretation of the lifetimes becomes more challenging because the lifetimes can reveal richer, and even nonmonotonic, dependence on the force.
动态力谱学可探测单分子和分子组装体的动力学及热力学性质。在此,我们提出一种从这类实验中提取动力学信息的简单方法。我们方法的核心是将在不同力加载速率下获得的断裂力直方图转换为在恒力实验中可测量的力依赖寿命。为了解释力依赖寿命,我们推导了贝尔公式的一个推广形式,该形式在克莱默斯理论框架内严格精确。这一结果补充了我们之前针对一类模型势所推导的寿命解析表达式。我们通过分析DNA发夹的纳米孔解链以及通过柔性连接子连接到原子力显微镜上的蛋白质的展开来阐述我们的方法。即使分子伸展是一个不佳的反应坐标且必须考虑高维自由能面时,我们将断裂力直方图转换为力依赖寿命的方法仍然有效。在这种情况下,寿命的微观解释变得更具挑战性,因为寿命可能显示出对力更丰富甚至非单调的依赖关系。